
Towards

Diverse and Natural

Descriptions

for Image Captioning

DAI, Bo

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Doctor of Philosophy

in

Information Engineering

The Chinese University of Hong Kong

August 2018



Abstract

Generating descriptions of images has been an important task in computer

vision. Despite the substantial progress in recent years, captions produced

by existing methods are far from being perfect. Specifically, they resemble

training captions in n-gram statistics, leading to rigidity, lack of variability,

as well as insufficient coverage of images’ important semantics. To generate

natural and diverse captions, in this thesis we study the limitations of exist-

ing approaches from different aspects, including evaluation metrics, training

strategies as well as model structures, and propose improved approaches ac-

cordingly.

At first, we point out issues of the commonly used training strategy and

evaluation metrics, and propose an alternative training strategy based on

Conditional Generative Adversarial Networks (CGAN), which jointly learns

captioning models with a parametric evaluator assessing how well a caption

fits the visual content. While the resulting evaluator serves as a better evalu-

ation metric, the resulting captioning model is able to produce more diverse

captions. This work has been accepted to the International Conference on

Computer Vision 2017 (ICCV 2017).

In the second part, we follow the direction in the first part and afford

one more training strategy, Contrastive Learning, that explicitly takes into
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account the distinctiveness of captions, which introduces an independent

reference model, and formulates two constraints about distinctiveness upon

comparisons between the reference model and the target model. The pro-

posed training strategy encourages captioning models to focus on the unique

semantics of images, resulting in semantically well-matched captions. This

work has been accepted to the 31 Annual Conference on Neural Information

Processing Systems (NIPS2017).

In the third part, we rethink the form of latent states in existing ap-

proaches, where they are represented as 1D vectors. Alternatively, we propose

to represent them as multi-channel 2D maps, to preserve important proper-

ties such as spatial locality more effectively. Compared to a captioning model

with 1D states, the same model with 2D states consistently achieves higher

performance with comparable parameter sizes. In addition, on top of 2D

states, we are able to visually reveal the internal dynamics in the process of

caption generation, as well as the connections between input visual domain

and output linguistic domain. This work has been accepted to the European

Conference on Computer Vision 2018 (ECCV2018).

In the last two parts, we take one step further to rethink the popular

pipeline for image captioning, which represents images as feature vectors,

then generates captions sequentially based on them. Instead of implicit

feature vectors, we propose to represent visual semantics explicitly using

scene-graphs, consisting of visual concepts, their attributes, as well as their

pair-wise relationships, and generate captions upon such representations. To

obtain scene-graphs from images, in the fourth part we propose a novel frame-

work to detect visual relationships between pairs of objects, which correspond
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to edges in the scene-graphs. As for caption generation, in the fifth part we

propose to replace the sequential structure well adopted in existing captioning

models with a recursive compositional one, which captures the hierarchical

dependencies among words in a sentence, fitting the properties of natural

language. Besides, it generalizes better and yields more diverse captions.

The fourth work has been accepted to the Conference on Computer Vision

and Pattern Recognition (CVPR2017), and the fifth work has been submit-

ted to the 32 Annual Conference on Neural Information Processing Systems

(NIPS2018).
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摘摘摘要要要

圖像產生自然語言描述一直是計算機視覺的一個重要課題。

儘管這個課題在今年有顯著的發展,現有方法產生的描述仍然

有很大的提升空間。具體來說，他們在n元語法上（n-gram）同

訓練用的描述有很大的相似性。這樣的相似性使得他們缺少變

化，給人一種死板的感覺，同時對圖像的重要語義也缺乏足夠

的涉及。 了產生更自然更多變的圖像描述，我們在本論文中從

不同的角度研究了現有方法的侷限性，並提出相應的改進辦法。

在本論文的第一部分，我們指出了常用訓練策略和評價指標

中的不足，並提出了另一種基於條件對抗生成模型（CGAN）的

訓練策略。這個策略在訓練圖像描述模型的同時，同時訓練一

個帶參數的評價模型。該評價模型可當作更好的評價指標，用

來評價生成的描述的好壞以及其與對應圖像的契合度。同時這

樣得到的描述模型也能夠產生更多變的描述。這部分工作已經

被國際計算機視覺大會（ICCV 2017）接收。

在本論文的第二部分，我們沿 第一部分的方向提出了又一

種訓練策略，名 對比學習。對比學習顯式的考慮了描述的獨特

性（distinctiveness），通過引入一個獨立的參考模型，在參考模

型和目標模型的對比上關於獨特性的兩個約束。這樣的訓練策

略鼓勵目標模型關注圖像獨特的語義並把它加入到描述中，使
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得產生的描述很好的和圖像聯繫在了一起。這部分工作已經被

神經信息處理系統會議（NIPS 2017）接收。

在本論文的第三部分，我們審視了現有方法中對隱狀態的表

示方法。在現有方法中他們被表示成了一維向量，對此我們提

出了一種更好的表述方法，即二維多通道圖（multi-channel 2D map），

用來更好的保留視覺信息的特性，比如空間上的局部性。同一

模型採用二維隱狀態能比採用一維隱狀態在效果上有穩定的提

升。更重要的是，利用二維隱狀態，我們可以從視覺上揭露描

述生成過程中的內部動態，以及作 輸入的視覺和作 輸出的語

言之間的聯繫。這部分工作已被歐洲計算機視覺大會（ECCV

2018）接收。

在本論文的最後兩個部分，我們沿著第三部分的方向進一步

審視了產生圖像描述的主要方法。目前流行的產生圖像描述的

方法將圖片表示成特征向量，并基於特征向量順序得產生整個

描述。不同於隱式的特征向量，我們提出將圖像的語義顯式得

用場景圖（scene-graph）來表示，并在該顯式表示的基礎上產生

圖像的描述。場景圖中包含圖像的視覺實體和他們的性質，以

及他們兩兩之間的關係。為了得到圖像的場景圖表示，在第四

部分我們提出了一個全新的檢測物體兩兩之間的視覺關係的框

架，可以用來構建場景圖的邊。至於描述的產生，在第五部分

我們提出將現有方法中常用的順序結構替換成一種遞歸式的合

成結構。相比順序結構，這種新型的結構能夠抓住同一個句子

中單詞之間的多層次的依賴關係，更符合自然語言的特性。除

此之外，它具有更強的泛化能力，還能夠產生更多變的描述。

第四部分的工作已被計算機視覺和模式識別大會（CVPR2017）
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接收，同時第五部分的工作已投稿至神經信息處理系統會議（NIPS

2018）。
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Chapter 1

Introduction

1.1 Image Captioning

Generating captions of images has been an important task in computer

vision. Compared to other forms of semantic summary, e.g. object tagging,

linguistic descriptions are often richer, more comprehensive, and a more nat-

ural way to convey image content. Along with the recent surge of deep

learning technologies, there has been remarkable progress in image caption-

ing over the past few years [115, 122, 127, 123, 57]. Latest studies on this

topic often adopt a combination of an LSTM or its variant and a CNN. The

former is to produce the word sequence while the latter is to capture the

visual features of the images.

The advance in image captioning has been marked as a prominent success

of AI1. It has been reported [115, 122] that with certain metrics, like BLEU

[84] or CIDEr [113], state-of-the-art techniques have already surpassed hu-

1ARTIFICIAL INTELLIGENCE AND LIFE IN 2030, https://ai1000.stanford.

edu/2016-report
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A cow standing in a field next to houses

A cow standing in a field with houses

A cow standing in a field of grass

A train that is pulling into a station

A train that is going into a train station

A train that is parked in a train station

Figure 1.1: Captions generated by the state-of-the-art captioning model, where
multiple captions are generated for one image.

a man flying 
through the air 
while riding a 
snowboard

a man flying 
through the air 
while riding a 
snowboard

a man flying 
through the air 
while riding a 
snowboard

a man flying 
through the air 
while riding a 
skateboard

Figure 1.2: Captions generated by the state-of-the-art captioning model, where a
single caption is respectively generated for multiple similar images.

man’s performance. A natural question to ask is then: has the problem of

generating image captions been solved? Let us take a step back, and look at

samples of the current results, where multiple sentences are generated for one

image in Figure 1.1, by the Encoder-and-Decoder model [115], a state-of-the-

art caption generator. And in Figure 1.2, the same model generates a single

sentence respectively for multiple similar images. Though faithfully describ-

ing the content of the images, these sentences are rigid, lacking in vitality

and following a “safe” but “restrictive” way, resulting in almost identical

sentences for similar images. In this thesis, we study these issues in differ-
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ent angles, namely evaluation metrics, training strategies as well as model

structures, and explore possible improvements accordingly.

1.2 Adversarial Learning for Captioning

The issues of existing image captioning techniques are related to a learn-

ing principle widely used in practice, that is, to maximize the likelihood of

training samples. This principle encourages high resemblance to the “ground-

truth” captions, while suppressing other reasonable descriptions. Conven-

tional evaluation metrics, e.g. BLEU and METEOR, also favor such restric-

tive methods.

In this part of work, we explore an alternative approach, with the aim

to improve the naturalness and diversity – two essential properties of human

expression. Specifically, we propose a new framework based on Conditional

Generative Adversarial Networks (CGAN), which joinly learns a generator

to produce descriptions conditioned on images and an evaluator to assess

how well a description fits the visual content. It is noteworthy that training

a sequence generator is nontrivial. We overcome the difficulty by Policy

Gradient, a strategy stemming from Reinforcement Learning, which allows

the generator to receive early feedback along the way.

1.3 Contrastive Learning for Captioning

We argue the issues of existing image captioning techniques also associ-

ated to distinctiveness, an overlooked property of natural descriptions, which

is closely related to the quality of captions, as distinctive captions are more
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likely to describe images with their unique aspects.

In this part of work, we propose a new learning method, Contrastive

Learning (CL), for image captioning. Specifically, via two constraints for-

mulated on top of a reference model, the proposed method can encourage

distinctiveness, while maintaining the overall quality of the generated cap-

tions. The proposed method is generic and can be used for models with

various structures.

1.4 Captioning Models with 2D States

RNNs and their variants have been widely adopted for image captioning.

In RNNs, the production of a caption is driven by a sequence of latent states.

Existing captioning models usually represent latent states as vectors, taking

this practice for granted. In this part of work, we rethink this choice and

study an alternative formulation, namely using two-dimensional maps to en-

code latent states. This is motivated by the curiosity about a question: how

the spatial structures in the latent states affect the resultant captions?

Our study leads to two significant observations. First, the formulation

with 2D states is generally more effective in captioning, consistently achieving

higher performance with comparable parameter sizes. The resultant captions

also better fit the visual content. Second, 2D states preserve spatial locality.

Taking advantage of this, we visually reveal the internal dynamics in the

process of caption generation, as well as the connections between input visual

domain and output linguistic domain.
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1.5 Images as Scene-graphs

Mainstream captioning models often encode images using feature vectors,

which is an implicit representation for visual semantics. Although effective,

it is hard to interpret and evaluate. To overcome these issues, we propose

to represent images as scene-graphs, which are structured representations,

consisting of visual concepts, their attributes and their pair-wise visual re-

lationships. While great success has been made in recognizing individual

objects, reasoning about their relationships remains a challenging task.

In this part of work, we propose an integrated framework to tackle this

task. At the heart of the framework is the Deep Relational Network (DR-

Net), a novel formulation designed specifically for exploiting the statistical

dependencies between objects and their relationships. The framework is able

to detect visual relationships efficiently, facing the high diversity of visual

appearance for each kind of relationships and the large number of distinct

visual phrases.

1.6 A Neural Compositional Captioning Model

Mainstream captioning models often follow a sequential structure to gen-

erate captions, and inadequate generalization performance. In this part of

work, we along the direction of encoding images using explicit representa-

tions and present an alternative paradigm, which factorizes the captioning

procedure into two stages: (1) extracting an explicit semantic representation

from the given image; and (2) constructing the caption based on a recursive

compositional procedure in a bottom-up manner.
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Compared to conventional ones, our paradigm better preserves the se-

mantic content through an explicit factorization of semantics and syntax. By

using the compositional generation procedure, caption construction follows

a recursive structure, which naturally fits the properties of human language.

Moreover, the proposed compositional procedure requires less data to train,

generalizes better, and yields more diverse captions.



Chapter 2

Adversarial Learning for

Captioning

2.1 Introduction

Being an important task in computer vision, image captioning has made

remarkable progress in recent years. However, our brief survey (see Sec-

tion 2.2) shows that existing efforts primarily focus on fidelity, while other

essential qualities of human languages, e.g. naturalness and diversity, have

received less attention. More specifically, mainstream captioning models, in-

cluding those based on LSTMs [42], are mostly trained with the (conditional)

maximum likelihood objective. This objective encourages the use of the n-

grams that appeared in the training samples. Consequently, the generated

sentences will bear high resemblance to training sentences in detailed word-

ing, with very limited variability in expression [20]. Moreover, conventional

evaluation metrics, such as BLEU [84], METEOR [66], ROUGE [71], and

CIDEr [113], tend to favor this “safe” but restricted way. Under these met-

7
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rics, sentences that contain matched n-grams would get substantially higher

scores than those using variant expressions [2]. This issue is manifested by

the fact that human descriptions get considerably lower scores.

Motivated to move beyond these limitations, we explore an alternative

approach in this work. We wish to produce sentences that possess three

properties: (1) Fidelity: the generated descriptions should reflect the visual

content faithfully. Note that we desire the fidelity in semantics instead of

wording. (2) Naturalness: the sentences should feel like what real peo-

ple would say when presented with the image. In other words, when these

sentences are shown to a real person, she/he would ideally not be able to

tell that they are machine-generated. (3) Diversity: the generator should

be able to produce notably different expressions given an image – just like

human beings, different people would describe an image in different ways.

Towards this goal, we develop a new framework on top of the Conditional

GAN [83]. GAN has been successfully used in image generation. As reported

in previous works [92, 45], they can produce natural images nearly indistin-

guishable from real photos, freely or constrained by conditions. This work

studies a different task for the GAN method, namely, generating natural de-

scriptions conditioned on a given image. To our best knowledge, this is the

first time the GAN method is used for image description.

Applying GANs to text generation is nontrivial. It comes with two signifi-

cant challenges due to the special nature of linguistic representation. First, in

contrast to image generation, where the transformation from the input ran-

dom vector to the produced image is a deterministic continuous mapping,

the process of generating a linguistic description is a sequential sampling
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procedure, which samples a discrete token at each step. Such operations are

non-differentiable, making it difficult to apply back-propagation directly. We

tackle this issue via Policy Gradient, a classical method originating from rein-

forcement learning [109]. The basic idea is to consider the production of each

word as an action, for which the reward comes from the evaluator. By ap-

proximating the stochastic policy with a parametric function approximator,

we allow gradients to be back-propagated.

Second, in the conventional GAN setting, the generator would receive

feedback from the evaluator when an entire sample is produced. For se-

quence generation, this would lead to several difficulties in training, including

vanishing gradients and error propagation. To mitigate such difficulties, we

devise a mechanism that allows the generator to get early feedback. Particu-

larly, when a description is partly generated, our framework would calculate

an approximated expected future reward through Monte Carlo rollouts [129].

Empirically, we found that this significantly improves the efficiency and sta-

bility of the training process.

Overall, our contributions can be briefly summarized as follows: (1) We

explore an alternative approach to generate image descriptions, which, unlike

most of the previous work, encourages not only fidelity but also naturalness

and diversity. (2) From a technical standpoint, our approach relies on the

conditional GAN method to learn the generator, instead of using MLE, a

paradigm widely adopted in state-of-the-art methods. (3) Our framework

not only results in a generator that can produce natural and diverse expres-

sions, but also yields a description evaluator at the same time, which, as we

will show in our experiments, is substantially more consistent with human



CHAPTER 2. ADVERSARIAL LEARNING FOR CAPTIONING 10

evaluation.

2.2 Related Work

Generation. Generating descriptions for images has been a long stand-

ing topic in computer vision. Early studies mostly adopted detection-based

approaches. Such methods first detect visual concepts (e.g. object cate-

gories, relationships, and attributes) using CRFs [25, 60, 17], SVMs [68],

or CNNs [24, 69], then generate descriptions thereon using simple methods,

such as sentence templates [60, 68], or by retrieving relevant sentences from

existing data [25, 24, 67, 62].

In recent years, the Encoder-and-Decoder paradigm proposed in [115]

became increasingly popular. Many state-of-the-art frameworks [134, 127,

123, 78, 122, 115] for this task adopt the maximum likelihood principle for

learning. Such a framework usually works as follows. Given an image I,

it first derives a feature representation f(I), and then generates the words

w1, . . . , wT sequentially, following a Markov process conditioned on f(I). The

model parameters are learned via maximum likelihood estimation (MLE),

i.e. maximizing the conditional log-likelihood of the training samples, as:

∑
(Ii,Si)∼D

Ti∑
t=0

log p
(
w

(t)
i |f(I), w

(t−1)
i , . . . , w

(t−n)
i

)
(2.1)

Here, Ii and Si = (w
(0)
i , . . . , w

(Ti)
i ) are the image and the corresponding de-

scriptive sentence of the i-th sample, and n is the order of the Markov chain

– the distribution of the current word depends on n preceding words. Along

with the popularity of deep neural networks, latest studies often adopt neural
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A street sign mounted to a white light pole

A street sign in front of a multistory building

A street sign on a white lamp post says Ellis

A bike parked in front of a wooden structure

A graffiti covered truck parked in front of a building

A man standing in front of a stone wall
…

…

…

A street sign in front of a building

Input:

Have seen similar image before Sample following similar patterns

Output:

One windowed building acts as a mirror 
to show another building

• This is a building on the corner of Trinity 
and 4th Street
• A street sign on a street and a building 
with many windows behind it
• A green sign is in front of a large 
building
• Trinity and 4th street sign with stop sign
near glass building

A street sign in front of a building

Description 2:

Description 1:

Reference annotations:

(a) Generation (b) Evaluation

Figure 2.1: We illustrate the procedures of image caption generation and eval-
uation for state-of-the-art approaches. While the generation procedure tends to
follow observed patterns, the evaluation procedure also favors this point. Best
viewed in color.

networks for both image representation and language modeling. For example,

[122] uses a CNN for deriving the visual features f(I), and an LSTM [42] net

to express the sequential relations among words. Despite the evolution of the

modeling choices, the maximum likelihood principle remains the predominant

learning principle.

As illustrated in Figure 2.1, when similar images are presented, the sen-

tences generated by such a model often contain repeated patterns [19]. This

is not surprising – under the MLE principle, the joint probability of a sen-

tence is, to a large extent, determined by whether it contains the frequent

n-grams from the training set. Therefore, the model trained in this way will

tend to produce such n-grams. In particular, when the generator yields a few

of words that match the prefix of a frequent n-gram, the remaining words of

that n-gram will likely be produced following the Markov chain.
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a woman holding a skateboard on a street

0.71 0.61 0.75 0.36 1.49 0.28 0.05

B3 B4 ROUGE METEOR CIDEr SPICE E-GAN

0.25 0.01 0.48 0.19 0.36 0.14 0.37

three women one with a skateboard outside a store

a baseball player swinging a bat at a ball

0.71 0.65 0.78 0.39 2.21 0.28 0.48

B3 B4 ROUGE METEOR CIDEr SPICE E-GAN

0.01 0.01 0.31 0.23 0.82 0.25 0.82

the umpire stands over a catcher as the batter swings

a man holding a tennis racquet on a tennis court

0.99 0.99 1.0 1.0 3.53 0.58 0.69

B3 B4 ROUGE METEOR CIDEr SPICE E-GAN

0.01 0.01 0.48 0.28 1.03 0.2 0.67

a man getting ready to serve a tennis ball

Figure 2.2: Examples of images with two semantically similar captions, selected
from ground-truth annotations. While existing metrics assign higher scores to
those with more matched n-grams, E-GAN gives scores consistent with human
evaluation.

Evaluation. Along with the development of the generation methods, vari-

ous evaluation metrics have been proposed to assess the quality of the gener-

ated sentences. Classical metrics include BLEU [84] and ROUGE [71], which

respectively focuses on the precision and recall of n-grams. Beyond them,

METEOR [66] uses a combination of both the precision and the recall of

n-grams. CIDEr[113] uses weighted statistics over n-grams. As we can see,

such metrics mostly rely on matching n-grams with the “ground-truths”. As a

result, sentences that contain frequent n-grams will get higher scores as com-

pared to those using variant expressions, as shown in Figure 2.2. Recently, a

new metric SPICE [2] was proposed. Instead of matching between n-grams,

it focuses on those linguistic entities that reflect visual concepts (e.g. ob-

jects and relationships). However, other qualities, e.g. the naturalness of the
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expressions, are not considered in this metric.

Our Alternative Way. Previous approaches, including both generation

methods and evaluation metrics, primarily focus on the resemblance to the

training samples. While this is a safe way to generate plausible descriptions,

it is limited. For example, when presented an image, different people would

probably give different descriptions that do not overlap much in the word-

ing patterns. This diversity in expression is an essential property of human

languages, which, however, is often overlooked in previous works (both gen-

eration and evaluation). In this work, we explore an alternative approach

– instead of emphasizing n-gram matching, we aim to improve the natural-

ness and diversity, i.e. generating sentences that feel like what real people

would say, rather than focusing on word-by-word matching. Specifically, our

approach jointly trains a generator G and an evaluator E in an adversarial

way, where G is to produce natural descriptions, while E is to distinguish

irrelevant or artificial descriptions from natural ones.

From a technical standpoint, our approach is based on the conditional

GAN approach. GANs [33] and conditional GANs [83] are popular formu-

lations for learning generators. For computer vision, GAN was originally

introduced to generate images [92]. In a recent work [129], a text generator

based on the GAN method was proposed. Note that this is an unconstrained

generator that does not take into account any conditions. Hence, it can not

be directly used for generating descriptions for images – in this task, the

relevance of the generated text to the given image is essential. To our best

knowledge, this is the first study that explores the use of conditional GAN

in generating image descriptions.
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Figure 2.3: The structures of the generator G and the evaluator E.

2.3 Adversarial Learning for Captioning

We propose a new framework for generating image descriptions based on

the conditional GAN [83] method, which consists of a generator G, and an

evaluator E. Given an image I, the former is for generating natural and

semantically relevant descriptions; while the latter is for evaluating how well

a sentence describes I.

2.3.1 Overall Formulation

Our framework contains a generator G and a evaluator E, whose struc-

tures are respectively shown in Figure 2.3 (a) and (b). It is worth noting that

our framework is orthogonal to works that focus on architectural designs of

the G and the E. Their structures are not restricted to the ones introduced

in this paper. In our framework, given an image I, the generator G takes

two inputs: an image feature f(I) derived from a convolutional neural net-

work (CNN) and a random vector z. In particular, we follow the setting in

NeuralTalk21, adopting VGG16 [106] as the CNN architecture. The random

vector z allows the generator to produce different descriptions given an im-

1https://github.com/karpathy/neuraltalk2

https://github.com/karpathy/neuraltalk2
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age. One can control the diversity by tuning the variance of z. With both

f(I) and z as the initial conditions, the generator relies on an LSTM [42] net

as a decoder, which generates a sentence, word by word. Particularly, the

LSTM net assumes a sequence of latent states (s0, s1, . . .). At each step t, a

word wt is drawn from the conditional distribution p(w|st).

The evaluator E is also a neural network, with an architecture similar

to G but operating in a different way. Given an image I and a descriptive

sentence S = (w0, w1, . . .), it embeds them into vectors f(I) and h(S) of the

same dimension, respectively via a CNN and an LSTM net. Then the quality

of the description, i.e. how well it describes I, is measured by the dot product

of the embedded vectors, as

rη(I, S) = σ (〈f(I,ηI),h(S,ηS)〉) . (2.2)

Here, η = (ηI ,ηS) denotes the evaluator parameters, and σ is a logistic

function that turns the dot product into a probability value in [0, 1]. Note

that while the CNN and the LSTM net in E have the same structure as those

in G, their parameters are not tied with each other.

For this framework, the learning objective of G is to generate descriptions

that are natural, i.e. indistinguishable from what humans would say when

presented with the same image; while the objective of E is to distinguish

between artifical descriptions (i.e. those from G) and the real ones (i.e. those

from the training set). This can be formalized into a minimax problem as

follows:

min
θ

max
η
L(Gθ, Eη). (2.3)
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Here, Gθ and Eη are a generator with parameter θ and an evaluator with

parameter η. The objective function L is:

ES∼PI
[log rη(I, S)] + Ez∼N0 [log(1− rη(I,Gθ(I, z)))] . (2.4)

Here, PI denotes the descriptive sentences for I provided in the training set,

N0 denotes a standard normal distribution, and Gθ(I, z) denotes the sentence

generated with I and z. The overall learning procedure alternates between

the updating of G and E, until they reach an equilibrium.

This formulation reflects an essentially different philosophy in how to train

a description generator as opposed to those based on MLE. As mentioned,

our approach aims at the semantical relevance and naturalness, i.e. whether

the generated descriptions feel like what human would say, while the latter

focuses more on word-by-word patterns.

2.3.2 Training G: Policy Gradient & Early Feedback

As mentioned, unlike in conventional GAN settings, the production of

sentences is a discrete sampling process, which is nondifferentiable. A ques-

tion thus naturally arises - how can we back-propagate the feedback from E

under such a formulation? We tackle this issue via Policy Gradient [109], a

technique originating from reinforcement learning. The basic idea is to con-

sider a sentence as a sequence of actions, where each word wt is an action.

The choices of such “actions” are governed by a policy πθ.

With this interpretation, the generative procedure works as follows. It

begins with an empty sentence, denoted by S1:0, as the initial state. At each

step t, the policy πθ takes the conditions f(I), z, and the preceding words
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S1:t−1 as inputs, and yields a conditional distribution πθ(wt|f(I), z, S1:t−1)

over the extended vocabulary, namely all words plus an indicator of sentence

end, denoted by e. This computation is done by moving forward along the

LSTM net by one step. From this conditional distribution, an action wt will

be sampled. If wt = e, the sentence will be terminated, otherwise wt will be

appended to the end. The reward of this sequence of actions S is rη(I, S),

the score given by the evaluator E.

Now, we have defined an action space, a policy, and a reward function,

and it seems that we are ready to apply the reinforcement learning method.

However, there is a serious issue here – a sentence can only be evaluated

when it is completely generated. In other words, we can only see the reward

at the end. We found empirically that this would lead to a number of prac-

tical difficulties, e.g. gradients vanishing along a long chain and overly slow

convergence in training.

We address this issue through early feedback. To be more specific, we

evaluate an expected future reward as defined below when the sentence is

partially generated:

Vθ,η(I, z, S1:t) = ESt+1:T∼Gθ(I,z)[rη(I, S1:t ⊕ St+1:T )]. (2.5)

where ⊕ represents the concatenation operation. Here, the expectation can

be approximated using Monte Carlo rollouts [129]. Particularly, when we

have a part of the sentence S1:t, we can continue to sample the remaining

words by simulating the LSTM net until it sees an end indicator e. Con-

ducting this conditional simulation for n times would result in n sentences.

We can use the evaluation score averaged over these simulated sentences to
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approximate the expected future reward. To learn the generator Gθ, we use

maximizing this expected reward Vθ,η as the learning objective. Following

the argument in [109], we can derive the gradient of this objective w.r.t. θ

as:

Ẽ

[
Tmax∑
t=1

∑
wt∈V

∇θπθ(wt|I, z, S1:t−1) · Vθ′,ψ(I, z, S1:t ⊕ wt)

]
. (2.6)

Here, V is the vocabulary, Tmax is the max length of a description, and Ẽ is

the mean over all simulated sentences within a mini-batch. θ′ is a copy of

the generator parameter θ at the begining of the update procedure of the

generator. During the procedure, the generator will be updated multiple

times, and each update will use the same set of parameters (θ′) to compute

Eq.(2.5).

Overall, using policy gradients, we make the generator trainable with gra-

dient descent. Using expected future reward, we can provide early feedback

to the generator along the way, thus substantially improving the effectiveness

of the training process. Note that policy gradients have also been used in

image description generation in [95, 76]. These works, however, adopt con-

ventional metrics, e.g. BLEU and CIDEr as rewards, instead of relying on

GAN. Hence, their technical frameworks are fundamentally different.

2.3.3 Training E: Naturalness & Relevance

The primary purpose of E is to determine how well a description S de-

scribes a given image I. A good description needs to satisfy two criteria:

natural and semantically relevant. To enforce both criteria, inspired by [92]

we extend Eq.(2.4) to consider three types of descriptions for each training

image I: (1) SI : the set of descriptions for I provided by human, (2) SG:
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those from the generator Gθ, and (3) S\I : the human descriptions for dif-

ferent images, which is uniformly sampled from all descriptions that are not

associated with the given image I. To increase the scores for the descrip-

tions in SI while suppressing those in the others, we use a joint objective

formulated as:

max
η

LE(η) =
1

N

N∑
i=1

LE(Ii;η). (2.7)

Here, N is the number of training images. The term for each image Ii is

given by:

LE(I;η) = ES∈SI log rη(I, S)

+ α · ES∈SG log(1− rη(I, S))

+ β · ES∈S\I log(1− rη(I, S)). (2.8)

The second term forces the evaluator to distinguish between the human de-

scriptions and the generated ones, which would in turn provide useful feed-

backs to Gθ, pushing it to generate more natural descriptions. The third

term, on the other hand, ensures the semantic relevance, by explicitly sup-

pressing mismatched descriptions. The coefficients α and β are to balance

the contributions of these terms, whose values are empirically determined on

the validation set.

2.4 Experiment

Datasets We conducted experiments to test the proposed framework on

two datasets: (1) MSCOCO [73], which contains 82, 081 training images
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and 40, 137 validation images. (2) Flickr30k [128], which contains 31, 783

images in total. We followed the split in [50], which has 1, 000 images for

validation, 1, 000 for testing, and the rest for training. In both datasets,

each image has at least 5 ground truth sentences. Note that our experiments

involve comparison between human descriptions and model-generated ones.

As we have no access to the ground-truth annotations of the testing images

in MSCOCO, for this dataset, we use the training set for both training and

validation, and the validation set for testing the performance.

Experimental settings To process the annotations in each dataset, we

follow [50] to remove non-alphabet characters, convert all remaining charac-

ters to lower-case, and replace all the words that appeared less than 5 times

with a special word UNK. As a result, we get a vocabulary of size 9, 567

on MSCOCO, and a vocabulary of size 7, 000 on Flickr30k. All sentences

are truncated to contain at most 16 words during training. We respectively

pretrain G using standard MLE [115], for 20 epoches, and E with super-

vised training based on Eq.(2.8), for 5 epoches. Subsequently, G and E

are jointly trained, where each iteration consists of one step of G-update

followed by one step of E-update. We set the mini-batch size to 64, the

learning rate to 0.0001, and n = 16 in Monte Carlo rollouts. When testing,

we use beam search based on the expected rewards from E-GAN, instead of

the log-likelihoods, which we found empirically leads to better results.

Models We compare three methods for sentence generation: (1)Human:

a sentence randomly sampled from ground-truth annotations of each im-

age is used as the output of this method. Other human-provided sentences
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B3 B4 MT RG CD SP E-NGAN E-GAN

C
O

C
O human 0.290 0.192 0.240 0.465 0.849 0.211 0.527 0.626

G-MLE 0.393 0.299 0.248 0.527 1.020 0.199 0.464 0.427
G-GAN 0.305 0.207 0.224 0.475 0.795 0.182 0.528 0.602

F
li

ck
r human 0.269 0.185 0.194 0.423 0.627 0.159 0.482 0.464

G-MLE 0.372 0.305 0.215 0.479 0.767 0.168 0.465 0.439
G-GAN 0.153 0.088 0.132 0.330 0.202 0.087 0.582 0.456

Table 2.1: This table lists the performances of different generators on
MSCOCO and Flickr30k. On BLEU-{3,4} (B3, B4), METEOR (MT),
ROUGE L (RG), CIDEr (CD), and SPICE (SP), G-MLE is shown to be
the best among all generators, surpassing human by a significant margin.
While E-NGAN regard G-GAN as the best generator, E-GAN regard hu-
man as the best one.

will be used as the references for metric evaluation. This baseline is tested

for the purpose of comparing human-provided and model-generated descrip-

tions. (2)G-MLE: a generator trained based on MLE [115] is used to produce

the descriptions. This baseline represents the state-of-the-art of mainstream

methods. (3)G-GAN: the same generator trained by our framework pro-

posed in this paper, which is based on the conditional GAN formulations.

For both G-MLE and G-GAN, VGG16 [106] is used as the image en-

coders. Activations at the fc7 layer, which are of dimension 4096, are used

as the image features and fed to the description generators. Note that G-

GAN also takes a random vector z as input. Here, z is a 1024-dimensional

vector, whose entries are sampled from a standard normal distribution.

Evaluation metrics We consider multiple evaluation metrics, including

six conventional metrics BLEU-3 and BLEU-4[84], METEOR[66], ROUGE L[71],

CIDEr[113], SPICE[2], and two additional metrics relevant to our formula-

tion: E-NGAN and E-GAN. Particularly, E-GAN refers to the evaluator
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61

91

76

39G-GAN

G-GAN

G-MLE

G-MLE

human

human

Figure 2.4: The figure shows the human comparison results between each pair of
generators. With names of the generators placed at each side of the comparison,
the blue and orange areas respectively indicate percentages of the generator in the
left and right being the better one.

trained using our framework, E-NGAN refers to the evaluator trained ac-

cording to Eq.(2.8) without updating the generator alternatively. In other

words, it is trained to distinguish between human-provided sentences and

those generated by an MLE-based model.

Table 2.1 lists the performances of different generators under these met-

rics. On both datasets, the sentences produced by G-MLE receive consider-

ably higher scores than those provided by human, on nearly all conventional

metrics. This is not surprising. As discussed earlier, such metrics primarily

focus on n-gram matching w.r.t. the references, while ignoring other impor-

tant properties, e.g. naturalness and diversity. These results also clearly

suggest that these metrics may not be particularly suited when evaluating

the overall quality of the generated sentences. On the contrary, E-GAN re-

gards Human as the best generator, while E-NGAN regards G-GAN as the

best one. These two metrics obviously take into account more than just

n-gram matching.
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User study & qualitative comparison To fairly evaluate the quality

of the generated sentences as well as how consistent the metrics are with

human’s perspective, we conducted a user study. Specifically, we invited 30

human evaluators to compare the outputs of different generators. Each time,

a human evaluator would be presented an image with two sentences from

different methods and asked to choose the better one. Totally, we collected

about 3, 000 responses.

The comparative results are shown in Figure 2.4: From human’s views,

G-GAN is better than G-MLE in 61% of all cases. In the comparison be-

tween human and models, G-MLE only won in 9% of the cases, while G-GAN

won in over 24%. These results clearly suggest that the sentences produced

by G-GAN are of considerably higher quality, i.e. being more natural and se-

mantically relevant. The examples in Figure 2.6 also confirm this assessment.

Particularly, we can see when G-MLE is presented with similar images, it

tends to generate descriptions that are almost the same. On the contrary,

G-GAN describes them with more distinctive and diverse ones. We also var-

ied z to study the capability of G-GAN in giving diverse descriptions while

maintaining the semantical relatedness. The qualitative results are listed in

Figure 2.5.

For the evaluation metrics, the assessments provided by E-GAN are the

most consistent with human’s evaluation, where the Kendall’s rank correla-

tion coefficient between E-GAN and HE is 0.14, while that for CIDEr and

SPICE are -0.30 and -0.25. Also note that E-GAN yields a larger numerical

gap between scores of human and those of other generators as compared to

E-NGAN, which suggests that adversarial training can improve the discrim-
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R@1 R@3 R@5 R@10

S
G-MLE 5.06 12.28 18.24 29.30
G-GAN 14.30 30.88 40.06 55.82

P
G-MLE 9.88 20.12 27.30 39.94
G-GAN 12.04 23.88 30.70 41.78

Table 2.2: The recalls of image rankings for different generators. Here recalls is
the ratio of the original image being in the top-k in the ranked lists. The ranks
are based on the similarities (S) between a image and a description, estimated by
E-GAN, as well as the log-likelihoods (P), computed by different generators.

𝒛1
a baseball player holds a 
bat up to hit the ball

a man riding a snowboard
down a slope

a group of people sitting
around a table having a
meal in a restaurant

a group of men dressed 
in suits posing for a 
photo

𝒛2
a baseball player holding
white bat and wear blue
baseball uniform

a person standing on a
snowboard sliding down a
hill

a young man sitting at a 
table with coffee and a lot 
of food

a couple of men standing
next to each other 
wearing glasses

𝒛3
a professional baseball
player holds up his bat as
he watches

a man is jumping over a
snow covered hill

a pretty young man sitting
next to two men in lots of
people

some people dressed in 
costume and cups

Figure 2.5: This figure shows example images with descriptions generated by
G-GAN with different z.

inative power of the evaluator.

Evaluation by retrieval To compare the semantic relevance, we con-

ducted an experiment using generated descriptions for retrieval. Specifically,

we randomly select 5, 000 images from the MSCOCO validation set; and for

each image, we use the generated description as a query, ranking all 5, 000

images according to the similarities between the images and the descriptions,

computed by E-GAN, as well as the log-likelihoods. Finally, we compute the

recall of the original image that appeared in the top-k ranks. The results

for k = 1, 3, 5, 10 are listed in Table 2.2, where G-GAN is shown to provide
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G-MLE
a group of people 
standing around a boat

a group of people sitting
around a table

a group of people sitting 
at a table

a group of people sitting
around a living room

G-GAN
the bench is sitting on the
ground by the water

a group of people 
watching each other

a table with a lot of stuff 
on it

furnished living room 
with furniture and built 
area

G-MLE
a man flying through the 
air while riding a 
snowboard

a man flying through the 
air while riding a 
snowboard

a man flying through the 
air while riding a 
snowboard

a man flying through the 
air while riding a 
skateboard

G-GAN
a man on a skateboard in 
a snowy park

a man skiing down the
slope near a mountain

a man performing a grind
trick on a skateboard
ramp

a man with stunts on his
skis in the snow

Figure 2.6: This figure lists some images and corresponding captions generated
by G-GAN and G-MLE. G-MLE tends to generate similar descriptions for similar
images, while G-GAN generates better distinguishable descriptions for them.

more discriminative descriptions, outperforming G-MLE by a large margin

across all cases.

Failure Analysis We analyzed failure cases and found that a major kind

of errors is the inclusion of incorrect details. e.g. colors (red/yellow hat),

and counts (three/four people). A possible cause is that there are only a

few samples for each particular detail, and they are not enough to make

the generator capture these details reliably. Also, the focus on diversity and

overall quality may also encourage the generator to include more details, with

the risk of some details being incorrect.



Chapter 3

Contrastive Learning for

Captioning

3.1 Introduction

Image captioning, a task to generate natural descriptions of images, has

been an active research topic in computer vision and machine learning.

Thanks to the advances in deep neural networks, especially the wide adop-

tion of RNN and LSTM, there has been substantial progress on this topic in

recent years [115, 122, 78, 95]. However, studies [16, 24, 20, 63] have shown

that even the captions generated by state-of-the-art models still leave a lot

to be desired. Compared to human descriptions, machine-generated captions

are often quite rigid and tend to favor a “safe” (i.e. matching parts of the

training captions in a word-by-word manner) but restrictive way. As a conse-

quence, captions generated for different images, especially those that contain

objects of the same categories, are sometimes very similar [16], despite their

differences in other aspects.

26
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We argue that distinctiveness, a property often overlooked in previous

work, is significant in natural language descriptions. To be more specific,

when people describe an image, they often mention or even emphasize the

distinctive aspects of an image that distinguish it from others. With a dis-

tinctive description, someone can easily identify the image it is referring to,

among a number of similar images. In this work, we performed a self-retrieval

study (see Section 3.4.1), which reveals the lack of distinctiveness affects the

quality of descriptions.

From a technical standpoint, the lack of distinctiveness is partly related

to the way that the captioning model was learned. A majority of image

captioning models are learned by Maximum Likelihood Estimation (MLE),

where the probabilities of training captions conditioned on corresponding

images are maximized. While well grounded in statistics, this approach does

not explicitly promote distinctiveness. Specifically, the differences among the

captions of different images are not explicitly taken into account. We found

empirically that the resultant captions highly resemble the training set in a

word-by-word manner, but are not distinctive.

In this paper, we propose Contrastive Learning (CL), a new learn-

ing method for image captioning, which explicitly encourages distinctiveness,

while maintaining the overall quality of the generated captions. Specifically,

it employs a baseline, e.g. a state-of-the-art model, as a reference. Dur-

ing learning, in addition to true image-caption pairs, denoted as (I, c), this

method also takes as input mismatched pairs, denoted as (I, c/), where c/ is a

caption describing another image. Then, the target model is learned to meet

two goals, namely (1) giving higher probabilities p(c|I) to positive pairs, and
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(2) lower probabilities p(c/|I) to negative pairs, compared to the reference

model. The former ensures that the overall performance of the target model

is not inferior to the reference; while the latter encourages distinctiveness.

It is noteworthy that the proposed learning method (CL) is generic.

While in this paper, we focused on models based on recurrent neural net-

works [115, 78], the proposed method can also generalize well to models based

on other formulations, e.g. probabilistic graphical models [25, 60]. Also, by

choosing the state-of-the-art model as the reference model in CL, one can

build on top of the latest advancement in image captioning to obtain im-

proved performances.

3.2 Related Work

Models for Image Captioning The history of image captioning can date

back to decades ago. Early attempts are mostly based on detections, which

first detect visual concepts (e.g. objects and their attributes) [60, 25] fol-

lowed by template filling [60] or nearest neighbor retrieving for caption gen-

eration [20, 25]. With the development of neural networks, a more powerful

paradigm, encoder-and-decoder, was proposed by [115], which then becomes

the core of most state-of-the-art image captioning models. It uses a CNN

[106] to represent the input image with a feature vector, and applies a LSTM

net [42] upon the feature to generate words one by one.

Based on the encoder-and-decoder, many variants are proposed, where

attention mechanism [122] appears to be the most effective add-on. Specif-

ically, attention mechanism replaces the feature vector with a set of feature

vectors, such as the features from different regions [122] , and those under
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different conditions [134]. It also uses the LSTM net to generate words one

by one, where the difference is that at each step, a mixed guiding feature

over the whole feature set, will be dynamically computed. In recent years,

there are also approaches combining attention mechanism and detection. In-

stead of doing attention on features, they consider the attention on a set of

detected visual concepts, such as attributes [126] and objects [127].

Despite of the specific structure of any image captioning model, it is

able to give p(c|I), the probability of a caption conditioned on an image.

Therefore, all image captioning models can be used as the target or the

reference in CL method.

Learning Methods for Image Captioning Many state-of-the-art im-

age captioning models adopt Maximum Likelihood Estimation (MLE) as their

learning method, which maximizes the conditional log-likelihood of the train-

ing samples, as:

∑
(ci,Ii)∈D

Ti∑
t=1

ln p(w
(t)
i |Ii, w

(t−1)
i , ..., w

(1)
i ,θ), (3.1)

where θ is the parameter vector, Ii and ci = (w
(1)
i , w

(2)
i , ..., w

(Ti)
i ) are a train-

ing image and its caption. Although effective, some issues, including high

resemblance in model-gerenated captions, are observed [16] on models learned

by MLE.

Facing these issues, alternative learning methods are proposed in recent

years. Techniques of reinforcement learning (RL) have been introduced in

image captioning by [95] and [76]. RL sees the procedure of caption gen-

eration as a procedure of sequentially sampling actions (words) in a policy
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space (vocabulary). The rewards in RL are defined to be evaluation scores of

sampled captions. Note that distinctiveness has not been considered in both

approaches, RL and MLE.

Prior to this work, some relevant ideas have been explored [112, 81, 16].

Specifically, [112, 81] proposed an introspective learning (IL) approach that

learns the target model by comparing its outputs on (I, c) and (I/, c). Note

that IL uses the target model itself as a reference. On the contrary, the ref-

erence model in CL provides more independent and stable indications about

distinctiveness. In addition, (I/, c) in IL is pre-defined and fixed across the

learning procedure, while the negative sample in CL, i.e. (I, c/), is dynami-

cally sampled, making it more diverse and random. Recently, Generative Ad-

versarial Networks (GAN) was also adopted for image captioning [16], which

involves an evaluator that may help promote the distinctiveness. However,

this evaluator is learned to directly measure the distinctiveness as a param-

eterized approximation, and the approximation accuracy is not ensured in

GAN. In CL, the fixed reference provides stable bounds about the distinc-

tiveness, and the bounds are supported by the model’s performance on image

captioning. Besides that, [16] is specifically designed for models that generate

captions word-by-word, while CL is more generic.

3.3 Background

Our formulation is partly inspired by Noise Contrastive Estimation (NCE) [39].

NCE is originally introduced for estimating probability distributions, where

the partition functions can be difficult or even infeasible to compute. To es-

timate a parametric distribution pm(.;θ), which we refer to as the target dis-
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tribution, NCE employs not only the observed samples X = (x1,x2, ...,xTm),

but also the samples drawn from a reference distribution pn, denoted as

Y = (y1,y2, ...,yTn). Instead of estimating pm(.;θ) directly, NCE estimates

the density ratio pm/pn by training a classifier based on logistic regression.

Specifically, let U = (u1, ...,uTm+Tn) be the union of X and Y . A binary

class label Ct is assigned to each ut, where Ct = 1 if ut ∈ X and Ct = 0 if

ut ∈ Y . The posterior probabilities for the class labels are therefore

P (C = 1|u,θ) =
pm(u;θ)

pm(u;θ) + νpn(u)
, P (C = 0|u,θ) =

νpn(u)

pm(u;θ) + νpn(u)
,

(3.2)

where ν = Tn/Tm. Let G(u;θ) = ln pm(u;θ)− ln pn(u) and h(u,θ) = P (C =

1|u,θ), then we can write

h(u;θ) = rν(G(u;θ)), with rν(z) =
1

1 + ν exp(−z)
. (3.3)

The objective function of NCE is the joint conditional log-probabilities of Ct

given the samples U , which can be written as

L(θ;X, Y ) =
Tm∑
t=1

ln[h(xt;θ)] +
Tn∑
t=1

ln[1− h(yt;θ)]. (3.4)

Maximizing this objective with respect to θ leads to an estimation of G(·;θ),

the logarithm of the density ratio pm/pn. As pn is a known distribution,

pm(: |θ) can be readily derived.
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A man performing stunt 
in the air at skate park

Self Retrieval

A man doing a trick 
on a skateboard

Self Retrieval

(a)    Nondistinctive Caption (b)    Distinctive Caption 

Figure 3.1: This figure illustrates respectively a nondistinctive and distinctive
captions of an image, where the nondistinctive one fails to retrieve back the original
image in self retrieval task.

Self Retrieval Top-K Recall Captioning

Method 1 5 50 500 ROUGE L CIDEr

Neuraltalk2 [50] 0.02 0.32 3.02 27.50 0.652 0.827
AdaptiveAttention [78] 0.10 0.96 11.76 78.46 0.689 1.004
AdaptiveAttention + CL 0.32 1.18 11.84 80.96 0.695 1.029

Table 3.1: This table lists results of self retrieval and captioning of different
models. The results are reported on standard MSCOCO test set. See Section
3.4.1 for more details.

3.4 Contrastive Learning for Captioning

Learning a model by characterizing desired properties relative to a strong

baseline is a convenient and often quite effective way in situations where it is

hard to describe these properties directly. Specifically, in image captioning, it

is difficult to characterize the distinctiveness of natural image descriptions via

a set of rules, without running into the risk that some subtle but significant

points are missed. Our idea in this work is to introduce a baseline model as

a reference, and try to enhance the distinctiveness on top, while maintaining

the overall quality of the generated captions.

In the following we will first present an empirical study on the correlation

between distinctiveness of its generated captions and the overall performance

of a captioning model. Subsequently, we introduce the main framework of

Contrastive Learning in detail.
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3.4.1 Empirical Study: Self Retrieval

In most of the existing learning methods of image captioning, models are

asked to generate a caption that best describes the semantics of a given image.

In the meantime, distinctiveness of the caption, which, on the other hand,

requires the image to be the best matching among all images for the caption,

has not been explored. However, distinctiveness is crucial for high-quality

captions. A study by Jas [47] showed that specificity is common in human

descriptions, which implies that image descriptions often involve distinctive

aspects. Intuitively, a caption satisfying this property is very likely to contain

key and unique content of the image, so that the original image could easily

be retrieved when the caption is presented.

To verify this intuition, we conducted an empirical study which we refer to

as self retrieval. In this experiment, we try to retrieve the original image given

its model-generated caption and investigate top-k recalls, as illustrated in

Figure 3.1. Specifically, we randomly sampled 5, 000 images (I1, I2, ..., I5000)

from standard MSCOCO [73] test set as the experiment benchmark. For

an image captioning model pm(:,θ), we first ran it on the benchmark to

get corresponding captions (c1, c2, ..., c5000) for the images. After that, us-

ing each caption ct as a query, we computed the conditional probabilities

(pm(ct|I1), pm(ct|I2), ..., pm(ct|I5000)), which were used to get a ranked list of

images, denoted by rt. Based on all ranked lists, we can compute top-k

recalls, which is the fraction of images within top-k positions of their corre-

sponding ranked lists. The top-k recalls are good indicators of how well a

model captures the distinctiveness of descriptions.

In this experiment, we compared three different models, including Neu-
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raltalk2 [50] and AdaptiveAttention [78] that are learned by MLE, as well

as AdaptiveAttention learned by our method. The top-k recalls are listed

in Table 3.1, along with overall performances of these models in terms of

Rouge [71] and Cider [113]. These results clearly show that the recalls of self

retrieval are positively correlated to the performances of image captioning

models in classical captioning metrics. Although most of the models are not

explicitly learned to promote distinctiveness, the one with better recalls of self

retrieval, which means the generated-captions are more distinctive, performs

better in the image captioning evaluation. Such positive correlation clearly

demonstrates the significance of distinctiveness to captioning performance.

3.4.2 Contrastive Learning

In Contrastive Learning (CL), we learn a target image captioning model

pm(:;θ) with parameter θ by constraining its behaviors relative to a reference

model pn(:;φ) with parameter φ. The learning procedure requires two sets

of data: (1) the observed data X, which is a set of ground-truth image-

caption pairs ((c1, I1), (c2, I2), ..., (cTm , ITm)), and is readily available in any

image captioning dataset, (2) the noise set Y , which contains mismatched

pairs ((c/1, I1), (c/2, I2), ..., (c/Tn , ITn)), and can be generated by randomly

sampling c/t ∈ C/It for each image It, where C/It is the set of all ground-truth

captions except captions of image It. We refer to X as positive pairs while

Y as negative pairs.

For any pair (c, I), the target model and the reference model will respec-

tively give their estimated conditional probabilities pm(c|I,θ) and pn(c|I,φ).

We wish that pm(ct|It,θ) is greater than pn(ct|It,φ) for any positive pair
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(ct, It), and vice versa for any negative pair (c/t, It). Following this intu-

ition, our initial attempt was to define D((c, I);θ,φ), the difference between

pm(c|I,θ) and pn(c|I,φ), as

D((c, I);θ,φ) = pm(c|I,θ)− pn(c|I,φ), (3.5)

and set the loss function to be:

L′(θ;X, Y,φ) =
Tm∑
t=1

D((ct, It);θ,φ)−
Tn∑
t=1

D((c/t, It);θ,φ). (3.6)

In practice, this formulation would meet with several difficulties. First,

pm(c|I,θ) and pn(c|I,φ) are very small (∼ 1e-8), which may result in nu-

merical problems. Second, Eq.(3.6) treats easy samples, hard samples, and

mistaken samples equally. This, however, is not the most effective way. For

example, when D((ct, It);θ,φ)� 0 for some positive pair, further increasing

D((ct, It);θ,φ) is probably not as effective as updating D((ct′ , It′);θ,φ) for

another positive pair, for which D((ct′ , It′);θ,φ) is much smaller.

To resolve these issues, we adopted an alternative formulation inspired by

NCE (Section 3.3), where we replace the difference function D((c, I);θ,φ)

with a log-ratio function G((c, I);θ,φ):

G((c, I);θ,φ) = ln pm(c|I,θ)− ln pn(c|I,φ), (3.7)

and further use a logistic function rν (Eq.(3.3)) after G((c, I);θ,φ) to

saturate the influence of easy samples. Following the notations in NCE, we
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let ν = Tn/Tm, and turn D((c, I);θ,φ) into:

h((c, I);θ,φ) = rν(G((c, I);θ,φ))). (3.8)

Note that h((c, I);θ,φ) ∈ (0, 1). Then, we define our updated loss func-

tion as:

L(θ;X, Y,φ) =
Tm∑
t=1

ln[h((ct, It);θ,φ)] +
Tn∑
t=1

ln[1− h((c/t, It);θ,φ)]. (3.9)

For the setting of ν = Tn/Tm, we choose ν = 1, i.e. Tn = Tm, to ensure

balanced influences from both positive and negative pairs. This setting con-

sistently yields good performance in our experiments. Furthermore, we copy

X for K times and sample K different Y s, in order to involve more diverse

negative pairs without overfitted to them. In practice we found K = 5 is suf-

ficient to make the learning stable. Finally, our objective function is defined

to be

J(θ) =
1

K

1

Tm

K∑
k=1

L(θ;X, Yk,φ). (3.10)

Note that J(θ) attains its upper bound 0 if positive and negative pairs

can be perfectly distinguished, namely, for all t, h((ct, It);θ,φ) = 1 and

h((c/t, It);θ,φ) = 0. In this case, G((ct, It);θ,φ)→∞ andG((c/t, It);θ,φ)→

−∞, which indicates the target model will give higher probability p(ct|It) and

lower probability p(c/t|It), compared to the reference model. Towards this

goal, the learning process would encourage distinctiveness by suppressing

negative pairs, while maintaining the overall performance by maximizing the
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probability values on positive pairs.

3.4.3 Discussion

Maximum Likelihood Estimation (MLE) is a popular learning method

in the area of image captioning [115, 122, 78]. The objective of MLE is to

maximize only the probabilities of ground-truth image-caption pairs, which

may lead to some issues [16], including high resemblance in generated cap-

tions. While in CL, the probabilities of ground-truth pairs are indirectly

ensured by the positive constraint (the first term in Eq.(3.9)), and the nega-

tive constraint (the second term in Eq.(3.9)) suppresses the probabilities of

mismatched pairs, forcing the target model to also learn from distinctiveness.

Generative Adversarial Network (GAN) [16] is a similar learning method

that involves an auxiliary model. However, in GAN the auxiliary model and

the target model follow two opposite goals, while in CL the auxiliary model

and the target model are models in the same track. Moreover, in CL the

auxiliary model is stable across the learning procedure, while itself needs

careful learning in GAN.

It’s worth noting that although our CL method bears certain level of

resemblance with Noise Contrastive Estimation (NCE) [39]. The motivation

and the actual technical formulation of CL and NCE are essentially different.

For example, in NCE the logistic function is a result of computing posterior

probabilities, while in CL it is explicitly introduced to saturate the influence

of easy samples.

As CL requires only pm(c|I) and pn(c|I), the choices of the target model

and the reference model can range from models based on LSTMs [42] to



CHAPTER 3. CONTRASTIVE LEARNING FOR CAPTIONING 38

models in other formats, such as MRFs [25] and memory-networks [85]. On

the other hand, although in CL, the reference model is usually fixed across

the learning procedure, one can replace the reference model with the latest

target model periodically. The reasons are (1) ∇J(θ) 6= 0 when the target

model and the reference model are identical, (2) latest target model is usually

stronger than the reference model, (3) and a stronger reference model can

provide stronger bounds and lead to a stronger target model.

3.5 Experiment

3.5.1 Datasets

We use two large scale datasets to test our contrastive learning method.

The first dataset is MSCOCO [73], which contains 122, 585 images for train-

ing and validation. Each image in MSCOCO has 5 human annotated cap-

tions. Following splits in [78], we reserved 2, 000 images for validation. A

more challenging dataset, InstaPIC-1.1M [85], is used as the second dataset,

which contains 648, 761 images for training, and 5, 000 images for testing.

The images and their ground-truth captions are acquired from Instagram,

where people post images with related descriptions. Each image in InstaPIC-

1.1M is paired with 1 caption. This dataset is challenging, as its captions are

natural posts with varying formats. In practice, we reserved 2, 000 images

from the training set for validation.

On both datasets, non-alphabet characters except emojis are removed,

and alphabet characters are converted to lowercases. Words and emojis that

appeared less than 5 times are replaced with UNK. And all captions are
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COCO Online Testing Server C5

Method BLEU-3 BLEU-4 METEOR ROUGE L CIDEr

Google NIC [115] 0.407 0.309 0.254 0.530 0.943
Hard-Attention[122] 0.383 0.277 0.241 0.516 0.865
AdaptiveAttention [78] 0.429 0.323 0.258 0.541 1.001
AdpativeAttention + CL 0.436 0.326 0.260 0.544 1.010
PG-BCMR [76] 0.445 0.332 0.257 0.550 1.013

ATT-FCN† [127] 0.424 0.316 0.250 0.535 0.943
MSM† [126] 0.436 0.330 0.256 0.542 0.984
AdaptiveAttention† [78] 0.443 0.335 0.264 0.550 1.037
Att2in† [95] - 0.344 0.268 0.559 1.123

COCO Online Testing Server C40

Method BLEU-3 BLEU-4 METEOR ROUGE L CIDEr

Google NIC [115] 0.694 0.587 0.346 0.682 0.946
Hard-Attention [122] 0.658 0.537 0.322 0.654 0.893
AdaptiveAttention [78] 0.717 0.607 0.347 0.689 1.004
AdaptiveAttention + CL 0.728 0.617 0.350 0.695 1.029
PG-BCMR [76] - - - - -

ATT-FCN† [127] 0.709 0.599 0.335 0.682 0.958
MSM† [126] 0.740 0.632 0.350 0.700 1.003
AdaptiveAttention† [78] 0.740 0.633 0.359 0.706 1.051
Att2in† [95] - - - - -

Table 3.2: This table lists published results of state-of-the-art image captioning
models on the online COCO testing server. † indicates ensemble model. ”-” indi-
cates not reported. In this table, CL improves the base model (AdaptiveAttention
[78]) to gain the best results among all single models on C40.

truncated to have at most 18 words and emojis. As a result, we obtained a

vocabulary of size 9, 567 on MSCOCO, and a vocabulary of size 22, 886 on

InstaPIC-1.1M.

3.5.2 Settings

To study the generalization ability of proposed CL method, we tested

it on two different image captioning models, namely Neuraltalk2 [50] and

AdaptiveAttention [78]. Both models are based on encoder-and-decoder
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Method BLEU-3 BLEU-4 METEOR ROUGE L CIDEr

Google NIC [115] 0.007 0.003 0.038 0.081 0.004
Hard-Attention [122] 0.000 0.000 0.026 0.140 0.049
CSMN [85] 0.015 0.008 0.037 0.120 0.133
AdaptiveAttention [78] 0.011 0.005 0.029 0.093 0.126
AdaptiveAttention + CL 0.013 0.006 0.032 0.101 0.144

Table 3.3: This table lists results of different models on the test split of InstaPIC-
1.1M [85], where CL improves the base model (AdaptiveAttention [78]) by signif-
icant margins, achieving the best result on Cider.

[115], where no attention mechanism is used in the former, and an adaptive

attention component is used in the latter.

For both models, we have pretrained them by MLE, and use the pretrain

checkpoints as initializations. In all experiments except for the experiment

on model choices, we choose the same model and use the same initialization

for target model and reference model. In all our experiments, we fixed the

learning rate to be 1e-6 for all components, and used Adam optimizer. Seven

evaluation metrics have been selected to compare the performances of dif-

ferent models, including Bleu-1,2,3,4 [84], Meteor [66], Rouge [71] and Cider

[113]. All experiments for ablation studies are conducted on the validation

set of MSCOCO.

3.5.3 Results

Overall Results We compared our best model (AdaptiveAttention [78]

learned by CL) with state-of-the-art models on two datasets. On MSCOCO,

we submitted the results to the online COCO testing server. The results

along with other published results are listed in Table 3.2. Compared to

MLE-learned AdaptiveAttention, CL improves the performace of it by signif-
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AA
Three clocks are mounted to 
the side of a building

Two people on a yellow
yellow and yellow motorcycle

A baseball player pitching a 
ball on top of a field

A bunch of lights hanging 
from a ceiling

AA + CL
Three three clocks with three 
different time zones

Two people riding a yellow
motorcycle in a forest

A baseball game in progress 
with pitcher throwing the ball

A bunch of baseballs bats
hanging from a ceiling

AA
Two people on a tennis court 
playing tennis

A fighter jet flying through a 
blue sky

A row of boats on a river near 
a river

A bathroom with a toilet and a 
sink

AA + CL
Two tennis players shaking 
hands on a tennis court

A fighter jet flying over a lush 
green field

A row of boats docked in a 
river

A bathroom with a red toilet
and red walls

Figure 3.2: This figure illustrates several images with captions generated by dif-
ferent models, where AA represents AdaptiveAttention [78] learned by MLE, and
AA + CL represents the same model learned by CL. Compared to AA, AA + CL
generated more distinctive captions for these images.

icant margins across all metrics. While most of state-of-the-art results are

achieved by ensembling multiple models, our improved AdaptiveAttention

gains competitive results as a single model. Specifically, on Cider, CL im-

proves AdaptiveAttention from 1.003 to 1.029, which is the best single-model

result on C40 among all published ones. In terms of Cider, if we use MLE, we

need to combine 5 models to get 4.5% boost on C40 for AdaptiveAttention.

Using CL, we improve the performance by 2.5% with just a single model. On

InstaPIC-1.1M, CL improves the performance of AdaptiveAttention by 14%

in terms of Cider, which is the state-of-the-art. Some qualitative results are

shown in Figure 3.2. It’s worth noting that the proposed learning method

can be used with stronger base models to obtain better results without any

modification.

Compare Learning Methods Using AdaptiveAttention learned by MLE

as base model and initialization, we compared our CL with similar learn-
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Method BLEU-3 BLEU-4 METEOR ROUGE L CIDEr

AdaptiveAttention [78] (Base) 0.433 0.327 0.260 0.540 1.042
Base + IL [112] 0.408 0.307 0.253 0.530 1.004
Base + GAN [16] 0.290 0.190 0.212 0.458 0.700
Base + CL(P) 0.437 0.334 0.262 0.545 1.059
Base + CL(N) 0.299 0.212 0.246 0.479 0.603
Base + CL(Full) 0.460 0.353 0.271 0.559 1.142

Table 3.4: This table lists results of a model learned by different methods. The
best result is obtained by the one learned with full CL, containing both the positive
constraint and negative constraint.

ing methods, including CL(P) and CL(N) that respectively contains only

the positive constraint and the negative constraint in CL. We also compared

with IL [112], and GAN [16]. The results on MSCOCO are listed in Table

3.4, where (1) among IL, CL and GAN, CL improves performance of the

base model, while both IL and GAN decrease the results. This indicates

the trade-off between learning distinctiveness and maintaining overall per-

formance is not well settled in IL and GAN. (2) comparing models learned

by CL(P), CL(N) and CL, we found using the positive constraint or the

negative constraint alone is not sufficient, as only one source of guidance is

provided. While CL(P) gives the base model lower improvement than full

CL, CL(N) downgrades the base model, indicating overfits on distinctiveness.

Combining CL(P) and CL(N), CL is able to encourage distinctiveness while

also emphasizing on overall performance, resulting in largest improvements

on all metrics.

Compare Model Choices To study the generalization ability of CL,

AdaptiveAttention and Neuraltalk2 are respectively chosen as both the target

and the reference in CL. In addition, AdaptiveAttention learned by MLE, as

a better model, is chosen to be the reference, for Neuraltalk2. The results
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Target Model Reference BLEU-3 BLEU-4 METEOR ROUGE L CIDEr

NT - 0.389 0.291 0.238 0.516 0.882
NT NT 0.399 0.300 0.242 0.524 0.905
NT AA 0.411 0.311 0.249 0.533 0.956

AA - 0.433 0.327 0.260 0.540 1.042
AA AA 0.460 0.353 0.271 0.559 1.142

Table 3.5: This table lists results of different model choices on MSCOCO. In this
table, NT represents Neuraltalk2 [50], and AA represents AdaptiveAttention [78].
”-” indicates the target model is learned using MLE.

Run BLEU-3 BLEU-4 METEOR ROUGE L CIDEr

0 0.433 0.327 0.260 0.540 1.042
1 0.460 0.353 0.271 0.559 1.142
2 0.460 0.353 0.272 0.559 1.142

Table 3.6: This table lists results of periodical replacement of the reference in CL.
In run 0, the model is learned by MLE, which are used as both the target and the
reference in run 1. In run 2, the reference is replaced with the best target in run
1.

are listed in Table 3.5, where compared to models learned by MLE, both

AdaptiveAttention and Neuraltalk2 are improved after learning using CL.

For example, on Cider, AdaptiveAttention improves from 1.042 to 1.142, and

Neuraltalk2 improves from 0.882 to 0.905. Moreover, by using a stronger

model, AdaptiveAttention, as the reference, Neuraltalk2 improves further

from 0.905 to 0.956, which indicates stronger references empirically provide

tighter bounds on both the positive constraint and the negative constraint.

Reference Replacement As discussed in Section 3.4.3, one can periodi-

cally replace the reference with latest best target model, to further improve

the performance. In our study, using AdaptiveAttention learned by MLE as

a start, each run we fix the reference model util the target saturates its per-

formance on the validation set, then we replace the reference with latest best
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target model and rerun the learning. As listed in Table 3.6, in second run,

the relative improvements of the target model is incremental, compared to

its improvement in the first run. Therefore, when learning a model using CL,

with a sufficiently strong reference, the improvement is usually saturated in

the first run, and there is no need, in terms of overall performance, to replace

the reference multiple times.



Chapter 4

Captioning Models with 2D

States

4.1 Introduction

Image captioning, a task of generating short descriptions for given im-

ages, has received increasing attention in recent years. Latest works on this

task [115, 122, 95, 78] mostly adopt the encoder-decoder paradigm, where

a recurrent neural network (RNN) or one of its variants, e.g. GRU [13] and

LSTM [42], is used for generating the captions. Specifically, the RNN main-

tains a series of latent states. At each step, it takes the visual features

together with the preceding word as input, updates the latent state, then es-

timates the conditional probability of the next word. Here, the latent states

serve as pivots that connect between the visual and the linguistic domains.

Following the standard practice in language models [13, 35], existing cap-

tioning models usually formulate the latent states as vectors and the connec-

tions between them as fully-connected transforms. Whereas this is a natural

45
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choice for purely linguistic tasks, it becomes a question when the visual do-

main comes into play, e.g. in the task of image captioning.

Along with the rise of deep learning, convolutional neural networks (CNN)

have become the dominant models for many computer vision tasks [40, 100].

Convolution has a distinctive property, namely spatial locality, i.e. each out-

put element corresponds to a local region in the input. This property allows

the spatial structures to be maintained by the feature maps across layers. The

significance of spatial locality for vision tasks have been repeatedly demon-

strated in previous work [40, 5, 44, 98, 70].

Image captioning is a task that needs to bridge both the linguistic and the

visual domains. Thus for this task, it is important to capture and preserve

properties of the visual content in the latent states. This motivates us to

explore an alternative formulation for image captioning, namely representing

the latent states with 2D maps and connecting them via convolutions. As

opposed to the standard formulation, this variant is capable of preserving

spatial locality, and therefore it may strengthen the role of visual structures

in the process of caption generation.

We compared both formulations, namely the standard one with vector

states and the alternative one that uses 2D states, which we refer to as

RNN-2DS. Our study shows: (1) The spatial structures significantly impact

the captioning process. Editing the latent states, e.g. suppressing certain

regions in the states, can lead to substantially different captions. (2) Pre-

serving the spatial structures in the latent states is beneficial for caption-

ing. On two public datasets, MSCOCO [73] and Flickr30k [128], RNN-2DS

achieves notable performance gain consistently across different settings. In
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particular, a simple RNN-2DS without gating functions already outperforms

more sophisticated networks with vector states, e.g. LSTM. Using 2D states

in combination with more advanced cells, e.g. GRU, can further boost the

performance. (3) Using 2D states makes the captioning process amenable to

visual interpretation. Specifically, we take advantage of the spatial locality

and develop a simple yet effective way to identify the connections between

latent states and visual regions. This enables us to visualize the dynamics of

the states as a caption is being generated, as well as the connections between

the visual domain and the linguistic domain.

In summary, our contributions mainly lie in three aspects. First, we re-

think the form of latent states in image captioning models, for which existing

work simply follows the standard practice and adopts the vectorized repre-

sentations. To our best knowledge, this is the first study that systematically

explores two dimensional states in the context of image captioning. Second,

our study challenges the prevalent practice, which reveals the significance of

spatial locality in image captioning and suggests that the formulation with

2D states and convolution is more effective. Third, leveraging the spatial

locality of the alternative formulation, we develop a simple method that can

visualize the dynamics of the latent states in the decoding process.

4.2 Related Work

Image Captioning. Image captioning has been an active research topic in

computer vision. Early techniques mainly rely on detection results. Kulkarni

et al [60] proposed to first detect visual concepts, and then generate captions

by filling sentence templates. Farhadi et al [25] proposed to generate captions
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for a given image by retrieving from training captions based on detected

concepts.

In recent years, the methods based on neural networks are gaining ground.

Particularly, the encoder-decoder paradigm [115], which uses a CNN [106] to

encode visual features and then uses an LSTM net [42] to decode them into

a caption, was shown to outperform classical techniques and has been widely

adopted. Along with this direction, Xu et al [122] proposed to use a dynamic

attention map to guide the decoding process. Yao et al [126] additionally

incorporate visual attributes detected from the images, obtaining further

improvement. While achieving significant progress, all these methods rely on

vectors to encode visual features and to represent latent states.

Multi-dimensional RNN. Existing works that aim at extending RNN to

more dimensions roughly fall into three categories:

(1) RNNs are applied on multi-dimensional grids, e.g. the 2D grid of

pixels, via recurrent connections along different dimensions [36, 136]. Such

extensions have been used in image generation [119] and CAPTCHA recog-

nition [99].

(2) Latent states of RNN cells are stacked across multiple steps to form

feature maps. This formulation is usually used to capture temporal statistics,

e.g. those in language processing [116, 28] and audio processing [53]. For both

categories above, the latent states are still represented by 1D vectors. Hence,

they are essentially different from this work.

(3) Latent states themselves are represented as multi-dimensional arrays.

The RNN-2DS studied in this paper belongs to the third category, where

latent states are represented as 2D feature maps. The idea of extending
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RNN with 2D states has been explored in various vision problems, such as

rainfall prediction [120], super-resolution [44], instance segmentation [98],

and action recognition [70]. It is worth noting that all these works focused

on tackling visual tasks, where both the inputs and the outputs are in 2D

forms. To our best knowledge, this is the first work that studies recurrent

networks with 2D states in image captioning. A key contribution of this work

is that it reveals the significance of 2D states in connecting the visual and

the linguistic domains.

Interpretation. There are studies to analyze recurrent networks. Karpa-

thy et al [51] try to interpret the latent states of conventional LSTM models

for natural language understanding. Similar studies have been conducted by

Ding et al [21] for neural machine translation. However, these studies fo-

cused on linguistic analysis, while our study tries to identify the connections

between linguistic and visual domains by leveraging the spatial locality of

the 2D states.

Our visualization method on 2D latent states also differs from the atten-

tion module [122] fundamentally, in both theory and implementation. (1)

Attention is a mechanism specifically designed to guide the focus of a model,

while the 2D states are a form of representation. (2) Attention is usually

implemented as a sub-network. In our work, the 2D states by themselves do

not introduce any attention mechanism. The visualization method is mainly

for the purpose of interpretation, which helps us better understand the in-

ternal dynamics of the decoding process. To our best knowledge, this is

accomplished for the first time for image captioning.
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4.3 Formulations

To begin with, we review the encoder-decoder framework [115] which

represents latent states as 1D vectors. Subsequently, we reformulate the

latent states as multi-channel 2D feature maps for this framework. These

formulations are the basis for our comparative study.

4.3.1 Encoder-Decoder for Image Captioning

The encoder-decoder framework generates a caption for a given image

in two stages, namely encoding and decoding. Specifically, given an image

I, it first encodes the image into a feature vector v, with a Convolutional

Neural Network (CNN), such as VGGNet [106] or ResNet [40]. The feature

vector v is then fed to a Recurrent Neural Network (RNN) and decoded

into a sequence of words (w1, . . . , wT ). For decoding, the RNN implements a

recurrent process driven by latent states, which generates the caption through

multiple steps, each yielding a word. Specifically, it maintains a set of latent

states, represented by a vector ht that would be updated along the way. The

computational procedure can be expressed by the formulas below:

h0 = 0, ht = g(ht−1,xt, I), (4.1)

pt|1:t−1 = Softmax(Wpht), (4.2)

wt ∼ pt|1:t−1. (4.3)

The procedure can be explained as follows. First, the latent state h0 is

initialized to be zeros. At the t-th step, ht is updated by an RNN cell g,

which takes three inputs: the previous state ht−1, the word produced at
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the preceding step (represented by an embedded vector xt), and the visual

feature v. Here, the cell function g can take a simple form:

g(h,x,v) = tanh (Whh + Wxx + Wvv) . (4.4)

More sophisticated cells, such as GRU [13] and LSTM [42], are also increas-

ingly adopted in practice. To produce the word wt, the latent state ht will

be transformed into a probability vector pt|1:t−1 via a fully-connected lin-

ear transform Wpht followed by a softmax function. Here, pt|1:t−1 can be

considered as the probabilities of wt conditioned on previous states.

Despite the differences in their architectures, all existing RNN-based cap-

tioning models represent latent states as vectors without explicitly preserving

the spatial structures. In what follows, we will discuss the alternative choice

that represents latent states as 2D multi-channel feature maps.

4.3.2 From 1D to 2D

From a technical standpoint, a natural way to maintain spatial structures

in latent states is to formulate them as 2D maps and employ convolutions

for state transitions, which we refer to as RNN-2DS.

Specifically, as shown in Figure 4.1, the visual feature V, the latent state

Ht, and the word embedding Xt are all represented as 3D tensors of size

C × H × W . Such a tensor can be considered as a multi-channel map,

which comprises C channels, each of size H ×W . Unlike the normal setting

where the visual feature is derived from the activation of a fully-connected

layer, V here is derived from the activation of a convolutional layer that

preserves spatial structures. And Xt is the 2D word embedding for wt−1,
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Figure 4.1: The overall structure of the encoder-decoder framework with RNN-
2DS. Given an image I, a CNN first turns it into a multi-channel feature map V
that preserves high-level spatial structures. V will then be fed to an RNN-2DS,
where the latent state Ht is also represented by multi-channel maps and the state
transition is via convolution. At each step, the 2D states are transformed into a
1D vectors and then decoded into conditional probabilities of words.

of size C × H ×W . To reduce the number of parameters, we use a lookup

table of smaller size Cx ×Hx ×Wx to fetch the raw word embedding, which

will be enlarged to C × H ×W by two convolutional layers 1. With these

representations, state updating can then be formulated using convolutions.

For example, Eq.(4.4) can be converted into the following form:

Ht = relu (Kh ~ Ht−1 + Kx ~ Xt + Kv ~ V) . (4.5)

Here, ~ denotes the convolution operator, and Kh, Kx, and Kv are con-

volution kernels of size C × C × Hk × Wk. It is worth stressing that the

modification presented above is very flexible and can easily incorporate more

1In our experiments, the raw word embedding is of size 4× 15× 15, and is scaled up to
match the size of latent states via two convolutional layers respectively with kernel sizes
32× 4× 5× 5 and C × 32× 5× 5.



CHAPTER 4. CAPTIONING MODELS WITH 2D STATES 53

sophisticated cells. For example, the original updating formulas of GRU are

rt = σ(Wrhht−1 + Wrxxt + Wrvv),

zt = σ(Wzhht−1 + Wzxxt + Wzvv),

h̃t = tanh(rt ◦ (Whhht−1) + Whxxt + Whvv),

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t, (4.6)

where σ is the sigmoid function, and ◦ is the element-wise multiplication

operator. In a similar way, we can convert them to the 2D form as

Rt = σ(Krh ~ Ht−1 + Krx ~ Xt + Krv ~ V),

Zt = σ(Kzh ~ Ht−1 + Kzx ~ Xt + Kzv ~ V),

H̃t = relu(Rt ◦ (Khh ~ Ht−1) + Khx ~ Xt + Khv ~ V),

Ht = Zt ◦Ht−1 + (1− Zt) ◦ H̃t. (4.7)

Given the latent states Ht, the word wt can be generated as follows. First,

we compress Ht (of size C×H×W ) into a C-dimensional vector ht by mean

pooling across spatial dimensions. Then, we transform ht into a probabil-

ity vector pt|1:t−1 and draw wt therefrom, following Eq.(4.2) and Eq.(4.3).

Note that the pooling operation could be replaced with more sophisticated

modules, such as an attention module, to summarize the information from

all locations for word prediction. We choose the pooling operation as it adds

zero extra parameters, which makes the comparison between 1D and 2D

states fair.

Since this reformulation is generic, besides the encoder-decoder frame-
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work, it can be readily extended to other captioning models that adopt RNNs

as the language module, e.g. Att2in [95] and Review Net [123].

4.4 Qualitative Studies on 2D States

Thanks to the preserved spatial locality, the use of 2D states makes the

framework amenable to some qualitative analysis. Taking advantage of this,

we present three studies in this section: (1) We manipulate the 2D states

and investigate how it impacts the generated captions. The results of this

study would corroborate the statement that 2D states help to preserve spatial

structures. (2) Leveraging the spatial locality, we identify the associations

between the activations of latent states and certain subregions of the input

image. Based on the dynamic associations between state activations and the

corresponding subregions, we can visually reveal the internal dynamics of the

decoding process. (3) Through latent states we also interpret the connections

between the visual and the linguistic domains.

4.4.1 State Manipulation

We study how the spatial structures of the 2D latent states influence the

resultant captions by controlling the accessible parts of the latent states.

As discussed in Section 4.3.2, the prediction at t-th step is based on ht,

which is pooled from Ht across H and W . In other words, ht summarizes

the information from the entire area of Ht. In this experiment, we replace

the original region (1, 1, H,W ) with a subregion between the corners (x1, y1)
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a dog and a dog sitting on a 
table

a bed with a backpack and a 
pair of shoes

a dog laying on a bed with a 
bag on it

a wooden bench sitting on 
top of a lush green field

an old brick niche of a 
brick building

a wooden bench in front 
of a brick building

a man standing in front of 
a lush green field

a zebra is standing in 
front of a building

a man standing next to a 
zebra in a field

a cat that is laying down 
on a couch

a paperback copy novel 
you knows great

a cat laying on top of a book

a stop sign sitting on top 
of a lush green field

a truck driving down a 
highway

a truck driving down a 
road next to a stop sign

a scenic view of a mountain 
range on a mountaintop

a cow standing on a dirt 
road

a cow standing on top of a 
rocky hillside

Figure 4.2: This figure lists several images with generated captions relying on
various parts of RNN-2DS’s states. The accessible part is marked with blue color
in each case.

and (x2, y2) to get a modified summarizing vector h′t as

h′t =
1

(y2 − y1 + 1)(x2 − x1 + 1)

y2∑
i=y1

x2∑
j=x1

Ht|(i,j). (4.8)

Here, h′t only captures a subregion of the image, on which the probabilities

for the word wt is computed. We expect that this caption only partially

reflects the visual semantics.

Figure 4.2 shows several images together with the captions generated

using different subregions of the 2D states. Take the bottom-left image in

Figure 4.2 for an instance, when using only the upper half of the latent states,
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the decoder generates a caption focusing on the cat, which indeed appears

in the upper half of the image. Similarly, using only the lower half of the

latent states results in a caption that talks about the book located in the

lower half of the image. In other words, depending on a specific subregion

of the latent states, a decoder with 2D states tends to generate a caption

that conveys the visual content of the corresponding area in the input image.

This observation suggests that the 2D latent states do preserve the spatial

structures of the input image.

Manipulating latent states differs essentially from the passive data-driven

attention module [122] commonly adopted in captioning models. It is a

controllable operation, and does not require a specific module to achieve

such functionality. With this operation, we can extend a captioning model

with 2D states to allow active management of the focus, which, for example,

can be used to generate multiple complementary sentences for an image.

While the attention module can be considered as an automatic manipulation

on latent states, the combination of 2D states and the attention mechanism

worths exploring in the future work.

4.4.2 Revealing Decoding Dynamics

This study intends to analyze internal dynamics of the decoding process,

i.e. how the latent states evolve in a series of decoding steps. We believe

that it can help us better understand how a caption is generated based on

the visual content. The spatial locality of the 2D states allows us to study

this in an efficient and effective way.

We use activated regions to align the activations of the latent states at
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Resize

Latent Channel Activation Activated RegionImage
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Figure 4.3: This figure shows our procedure of finding the activated region of a
latent channel at the t-th step.

different decoding steps with the subregions in the input image. Specifically,

we treat the channels of 2D states as the basic units in our study, which are

2D maps of activation values. Given a state channel c at the t-th decoding

step, we resize it to the size of the input image I via bicubic interpolation.

The pixel locations in I whose corresponding interpolated activations are

above a certain threshold2 are considered to be activated. The collection of

all such pixel locations is referred to as the activated region for the state

channel c at the t-th decoding step, as shown in Figure 4.3.

With activated regions computed respectively at different decoding steps

for one state channel, we may visually reveal the internal dynamics of the

decoding process at that channel. Figure 4.4 shows several images and their

generated captions, along with the activated regions of some channels follow-

ing the decoding processes. These channels are selected as they are associated

with nouns in the generated captions, which we will introduce in the next

section. Via this study we found that (1) The activated regions of chan-

nels often capture salient visual entities in the image, and also reflect the

surrounding context occasionally. (2) During a decoding process, different

channels have different dynamics. For a channel associated with a noun, the

activated regions of its associated channel become significant as the decoding

process approaches the point where the noun is produced, and the channel

2See Section 4.6 for the complete algorithm.
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073-Boy       a     young    boy      is   playing  tennis    on a     court

335-Zebra     a      man      is      in       a     field   with      a zebra                  

217-TV        a      cat      on      a       tv playing  with      a       tv

066-Cat       a      cat      on      a       tv playing  with      a       tv

450-Bench     a     bench  sitting    in      the   middle    of       a    forest

150-Plane     a     large passenger plane   flying  through    a cloudy    sky    

Figure 4.4: This figure shows the changes of several channels, in terms of the
activated regions, during the decoding processes. On the last two cases, changes
of two channels in the same decoding process are shown and compared. (Best
viewed in high resolution)

becomes deactivated afterwards.

The revealed dynamics can help us better understand the decoding pro-

cess, which also point out some directions for future study. For instance, in

Figure 4.4, the visual semantics are distributed to different channels, and the

decoder moves its focus from one channel to another. The mechanism that

triggers such movements remains needed to be explored.

4.4.3 Connecting Visual and Linguistic Domains

Here we investigate how the visual domain is connected to the linguistic

domain. As the latent states serve as pivots that connect both domains,
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Channel 060 - Bird

Channel 066 - Dog

Channel 272 - Hydrant

Channel 239 - Donut

Channel 150 - Plane

Channel 144 - Giraffe

Channel 073 - Man

Channel 450 - Bench

Channel 335 - Zebra

Channel 321 - Vase

Channel 424 - Sandwich

Channel 436 - Umbrella

Channel 066 - Cat

Channel 354 – Elephant

Channel 066 - Cow

Channel 405 - Woman

Figure 4.5: Sample words and their associated channels in RNN-2DS-(512, 7, 7).
For each word, 5 activated regions of its associated channel on images that contain
this word in the generated captions are shown. The activated regions are chosen
at the steps where the words are produced. (Best viewed in high resolution)

we try to use the activations of the latent states to identify the detailed

connections.

First, we find the associations between the latent states and the words.

Similar to Section 4.4.2, we use state channels as the basic units here, so that

we can use the activated regions which connect the latent states to the input

image. In Section 4.4.2, we have observed that a channel associated with a

certain word is likely to remain active until the word is produced, and its

activation level will drop significantly afterwards thus preventing that word

from being generated again. Hence, one way to judge whether a channel is

associated with a word is to estimate the difference in its level of activations

before and after the word is generated. The channel that yields maximum

difference can be considered as the one associated with the word3.

Words and Associated Channels. For each word in the vocabulary,

we could find its associated channel as described above, and study the corre-

sponding activated regions, as shown in Figure 4.5. We found that (1) Only

nouns have strong associations with the state channels, which is consistent

3See Section 4.6 for the complete algorithm.
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with the fact that spatial locality is highly-related with the visual entities

described as nouns. (2) Some channels have multiple associated nouns. For

example, Channel -066 is associated with “cat”, “dog”, and “cow”. This is

not surprising – since there are more nouns in the vocabulary than the num-

ber of channels, some nouns have to share channels. Here, it is worth noting

that the nouns that share a channel tend to be visually relevant. This shows

that the latent channels can capture meaningful visual structures. (3) Not

all channels have associated words. Some channels may capture abstract no-

tions instead of visual elements. The study of such channels is an interesting

direction in the future.

Match of Words and Associated Channels. On top of the activated

regions, we could also estimate the match between a word and its associated

channel. Specifically, noticing the activated regions visually look like the

attention maps in [75], we borrow the measurement of attention correctness

from [75], to estimate the match. Attention correctness computes the sim-

ilarity between a human-annotated segmentation mask of a word, and the

activated region of its associated channel, at the step the word is produced.

The computation is done by summing up the normalized activations within

that mask. On MSCOCO [73], we evaluated the attention correctness on 80

nouns that have human-annotated masks. As a result, the averaged atten-

tion correctness is 0.316. For reference, following the same setting except

for replacing the activated regions with the attention maps, AdaptiveAtten-

tion [78], a state-of-the-art captioning model, got a result of 0.213.

Deactivation of Word-Associated Channels. We also verify the

match of the found associations between the state channels and the words



CHAPTER 4. CAPTIONING MODELS WITH 2D STATES 61

Original

Deactivate 
word-associated 
channel

a red and red bird
perched on a branch

a red and green leaf 
filled with lots of fruit

a man standing in front 
of a fence with a bird

a man holding a 
baseball bat over his 
shoulder

a man getting ready 
to board a plane

a man standing next 
to a boarding gate

a vase filled with pink 
and yellow flowers

a bouquet of red 
flowers sitting on a 
table

Figure 4.6: This figure lists some images with generated captions before and after
some word-associated channel being deactivated. The word that associates with
the deactivated channel is marked in red.

alternatively via an ablation study, where we compare the generated captions

with and without the involvement of a certain channel. Specifically, on im-

ages that contain the target word w in the generated captions, we re-run the

decoding process, in which we deactivate the associated channel of w by clip-

ping its value to zero at all steps, then compare the generated captions with

previous ones. As shown in Figure 4.6, deactivating a word-associated chan-

nel leads to the miss of the corresponding words in the generated captions,

even though the input still contains the visual semantics for those words.

This ablation study corroborates the validity of our found associations.

4.5 Comparison on Captioning Performance

In this section, we compare the encoder-decoder framework with 1D

states and 2D states. Specifically, we run our studies on MSCOCO [73]

and Flickr30k [128], where we at first introduce the settings, followed by the

results.
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4.5.1 Settings

MSCOCO [73] contains 122, 585 images. We follow the splits in [50],

using 112, 585 images for training, 5, 000 for validation, and the remaining

5, 000 for testing. Flickr30K [128] contains 31, 783 images in total, and we

follow splits in [50], which has 1, 000 images respectively for validation and

testing, and the rest for training. In both datasets, each image comes with 5

ground-truth captions. To obtain a vocabulary, we turn words to lowercase

and remove those with non-alphabet characters. Then we replace words that

appear less than 6 times with a special token UNK, resulting in a vocabulary

of size 9, 487 for MSCOCO, and 7, 000 for Flickr30k. Following the common

convention [50], we truncated all ground-truth captions to have at most 18

words.

All captioning methods in our experiments are based on the encoder-

decoder paradigm [115]. We use ResNet-152 [40] pretrained on ImageNet

[100] as the encoder in all methods. In particular, we take the output of the

layer res5c as the visual feature V. We use the combination of the cell type

and the state shape to refer to each type of the decoder. e.g. LSTM-1DS-(L)

refers to a standard LSTM-based decoder with latent states of size L, and

GRU-2DS-(C,H,W ) refers to an RNN-2DS decoder with GRU cells as in

Eq.(4.7), whose latent states are of size C × H ×W . Moreover, all RNN-

2DS models adopt a raw word-embedding of size 4 × 15 × 15, except when

a different size is explicitly specified. The convolution kernels Kh, Kx, and

Kv share the same size C × C × 3× 3.

The focus of this paper is the representations of latent states. To en-

sure fair comparison, no additional modules including the attention module
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Figure 4.7: The results, in terms of different metrics, obtained using RNN-2DS
(green) and LSTM-1DS (red) on the MSCOCO offline test set with similar pa-
rameter sizes. Specifically, RNN-2DS of sizes 10.31M, 12.43M and 17.75M have
compared to LSTM-1DS of sizes 11.59M, 13.93M and 18.39M.

[122] are added to the methods. Moreover, no other training strategies are

utilized, such as the scheduled sampling [7], except for the maximum like-

lihood objective, where we use the ADAM optimizer [54]. During training,

we first fix the CNN encoder and optimize the decoder with learning rate

0.0004 in the first 20 epochs, and then jointly optimize both the encoder and

decoder, until the performance on the validation set saturates.

For evaluation, we report the results using metrics including BLEU-4

(B4) [84], METEOR (MT) [66], ROUGE (RG) [71], CIDER (CD) [113], and

SPICE (SP) [2].

4.5.2 Comparative Results

First, we compared RNN-2DS with LSTM-1DS. The former has 2D states

with the simplest type of cells while the latter has 1D states with sophisti-

cated LSTM cells. As the capacity of a model is closely related to the number

of parameters, to ensure a fair comparison, each config of RNN-2DS is com-

pared to an LSTM-1DS config with a similar number of parameters. In

this way, the comparative results will signify the differences in the inherent

expressive power of both formulations.
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Model RNN-
1DS

GRU-
1DS

LSTM-
1DS

RNN-
2DS

GRU-
2DS

LSTM-
2DS

#Param 13.58M 13.53M 13.52M 13.48M 17.02M 18.79M

COCO-offline

CD 0.914 0.920 0.935 0.977 1.001 0.994
B4 0.293 0.295 0.298 0.317 0.323 0.319
RG 0.520 0.520 0.523 0.534 0.539 0.538
SP 0.168 0.169 0.170 0.181 0.186 0.187

COCO-online

CD 0.868 0.889 0.904 0.930 0.962 0.958
B4 0.286 0.291 0.295 0.305 0.316 0.313
RG 0.515 0.518 0.523 0.527 0.535 0.531
SP - - - - -

Flickr30k

CD 0.353 0.360 0.381 0.420 0.438 0.427
B4 0.195 0.195 0.202 0.217 0.218 0.220
RG 0.427 0.428 0.437 0.442 0.445 0.444
SP 0.117 0.117 0.120 0.125 0.131 0.132

Table 4.1: The results obtained using different decoders on the offline and online
test sets of MSCOCO, and the test set of Flickr30k.

The resulting curves in terms of different metrics are shown in Figure

4.7, in which we can see that RNN-2DS outperforms LSTM-1DS consis-

tently, across different parameter sizes and under different metrics. These

results show that RNN-2DS, with the states that preserve spatial locality,

can capture both visual and linguistic information more efficiently.

We also compared different types of decoders with similar numbers of

parameters, namely RNN-1DS, GRU-1DS, LSTM-1DS, RNN-2DS, GRU-

2DS, and LSTM-2DS. Table 4.1 shows the results of these decoders on

both datasets, from which we observe: (1) RNN-2DS outperforms RNN-

1DS, GRU-1DS, and LSTM-1DS, indicating that embedding latent states in

2D forms is more effective. (2) GRU-2DS, which is also based on the pro-

posed formulation but adds several gate functions, surpasses other decoders

and yields the best result. This suggests that the techniques developed for

conventional RNNs including gate functions and attention modules [122] are
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RNN-1DS GRU-1DS LSTM-1DS RNN-2DS GRU-2DS

#used words 485 500 502 951 951
vocabulary 5.11% 5.27% 5.29% 10.02% 10.02%

training data 80.34% 80.47% 80.75% 86.59% 86.58%

Table 4.2: This table lists the number of words used by different methods when
generating captions for testing images of MSCOCO [73], with the ratio of them in
the vocabulary, as well as the ratio of their samples in the training set.

very likely to benefit RNNs with 2D states as well.

We also compared the usage of vocabulary for different decoders. As

shown in Table 4.2, on all 5, 000 testing images of MSCOCO, the encoder-

decoder framework with 1D states uses only 5% of the words in vocabulary

to generate their captions, which accounts for over 80% of the training words.

On the contrary, by replacing 1D states with 2D states, the encoder-decoder

framework now uses 10% of the words in vocabulary, which is twice the

original ratio. Figure 4.8 includes some qualitative samples, in which we

can see the captions generated by LSTM-1DS rely heavily on the language

priors, which sometimes contain the phrases that are not consistent with the

visual content but appear frequently in training captions. On the contrary,

the sentences from RNN-2DS and GRU-2DS are more relevant to the visual

content.

4.5.3 Ablation Study

Table 4.3 compares the performances obtained with different design choices

in RNN-2DS, including pooling methods, activation functions, and sizes of

word embeddings, kernels and latent states The results show that mean pool-

ing outperforms max pooling by a significant margin, indicating that infor-

mation from all locations is significant. The table also shows the best com-
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LSTM-1DS

RNN-2DS

a small bird sitting on a 
tree branch

a bird perched on a 
bird feeder

a giraffe standing next 
to a wooden fence

a giraffe laying down on 
a dirt ground 

a person walking down a 
street with an umbrella

a fire hydrant in 
front of a building

a cat sitting on a 
chair in a room

a cat sitting on top of a 
wooden table

GRU-2DS
a bird is sitting on a 
bird feeder

a giraffe laying on the 
ground in front of a building

a fire hydrant is covered 
in snow in the snow

a cat sitting in a bowl 
on a table

LSTM-1DS

RNN-2DS

a man laying on a bed 
with a laptop

a man laying on a bed 
with a book

two hot dogs with 
ketchup on a plate

a hot dog and french
fries on a plate

a cat laying on top of a 
pair of shoes

a black cat laying on top 
of a piece of luggage

a large elephant standing 
next to a baby elephant

an elephant standing 
in a field of grass

GRU-2DS
a man laying in bed 
reading a book

a hot dog and french
fries are on a plate

a black cat laying on top 
of a black suitcase

an elephant standing 
in a field of grass

Figure 4.8: This figure shows some qualitative samples of captions generated
by different decoders, where words in red indicate they are inconsistent with the
image.

bination of modeling choices for RNN-2DS: mean pooling, ReLU, the word

embeddings of size 4× 15× 15, the kernel of size 3× 3, and the latent states

of size 256× 7× 7.

4.6 Additional Materials

4.6.1 Activated Regions

For a given image I, the channel c of Ht, denoted by cIt , is a map of size

H×W . To obtain the activated region, we first resize cIt to the size of I with

bicubic interpolation, and then identify the activated pixels by thresholding.

In particular, those pixels whose corresponding values in cIt are above the
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Pooling Activation Word-Embedding Kernel Latent-State CD SP

Mean ReLU 4× 15× 15 3× 3 256× 7× 7 0.977 0.181

- tanh - - - 0.924 0.174
Max - - - - 0.850 0.166

- - 1× 15× 15 - - 0.965 0.180
- - 7× 15× 15 - - 0.951 0.179

- - - 1× 1 - 0.927 0.177
- - - 5× 5 - 0.951 0.177

- - - - 256× 5× 5 0.934 0.173
- - - - 256× 11× 11 0.927 0.176

Table 4.3: The results obtained on the MSCOCO offline test set using RNN-2DS
with different choices on pooling functions, activation functions, word-embeddings,
kernels and latent states. Except for the first row, each row only lists the choice
that is different from the first row. ”-” means the same.

threshold λ · v? are considered as activated. Here, v? is the maximum value

in the corresponding channel cIt over all decoding steps, and λ is a coefficient

in [0, 1] that controls the range of the activated regions. In practice, we set

λ = 0.2.

4.6.2 Word-Channel Association

To identify the connections between latent states and words, we devise a

metric to measure the degree of association between a word w and a channel

c, denoted by s(w, c).

The metric is designed following this observation: a channel associated

with a certain word is likely to remain active until the word is produced, and

its activation level will drop significantly afterwards thus preventing that

word from being generated again.

First, we measure the activation level of a channel c at the t-th step on a
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given image I as the sum of its entries:

η(cIt ) =
H∑
i=1

W∑
j=1

cIt (i, j). (4.9)

Then we use At1,t2 to denote the activation level averaged over a certain

period [t1, t2], as

At1,t2(c
I) =

1

t2 − t1 + 1

t2∑
j=t1

η(cIj ). (4.10)

Finally, the association score s(w, c) is defined to be the difference between

the average activation level up to the step where w is produced and the

average level afterwards. Such a difference is averaged over all samples that

contain the word w. Formally, this can be expressed as:

s(w, c) =
1

|I(w)|
∑
I∈I(w)

A1,twI
(cI)− AtwI +1,TI (c

I). (4.11)

Here, I(w) is the set of all images that contain w in their generated captions.

TI is the length of the caption for I. twI is the step at which w is produced for

I. A1,twI
(cI) and AtwI +1,TI (c

I) are respectively the average activations before

and after w is produced. Based on the association score, for each word w,

we could find the most relevant channel as c? = argmaxc s(w, c).



Chapter 5

Images as Scene-graphs:

Detecting Visual Relationships

with DR-Net

5.1 Introduction

Images in the real world often involve multiple objects that interact with

each other. To understand such images, being able to recognize individual

objects is generally not sufficient. The relationships among them also con-

tain crucial messages. For example, image captioning, a popular application

in computer vision, can generate richer captions based on relationships in

addition to objects in the images. Thanks to the advances in deep learn-

ing, the past several years witness remarkable progress in several key tasks

in computer vision, such as object recognition [94], scene classification [133],

and attribute detection [131]. However, visual relationship detection remains

69
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(man, sit, bike) (man, sit, chair) (man, sit, chair) (man, sit, street)
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(man, carry, board) (man, carry, bag) (man, carry, bag) (man, carry, bag)

Visual Relationship Detector
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(sky, above, tree)

(tree, under, sky)

(tree, on, grass)

(giraffe, on, grass)

(giraffe, behind, tree)

(giraffe, eat, tree)

Image Triplets Graph

Figure 5.1: Visual relationships widely exist in real-world images. Here are
some examples from the VRD [77] dataset, with relationship predicates “sit” and
“carry”. We develop a method that can effectively detect such relationships from
a given image. On top of that, a scene graph can be constructed.

a very difficult task. On Visual Genome [58], a large dataset designed for

structural image understanding, the state-of-the-art can only obtain 11.79%

of Recall@50 [77]. This performance is clearly far from being satisfactory.

A natural approach to this problem is to treat it as a classification task.

Early attempts [102] used to consider different combinations of objects and

relationship predicates (known as visual phrases) as different classes. While it

may work in a restricted context where the number of possible combinations

is moderate, such strategy would be met with a fundamental difficulty in

general – an extremely large number of imbalanced classes. As a case in

point, Visual Genome [58] contains over 75K distinct visual phrases, and the
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number of samples for each phrase ranges from just a handful to over 10K.

Even the most sophisticated classifier would suffer facing such a large and

highly imbalanced class space.

An alternative strategy is to consider each type of relationship predicates

as a class. Whereas the number of classes is drastically smaller, along with

this change also comes with an undesirable implication, namely the substan-

tially increased diversity within each class. To be more specific, phrases with

different object categories are considered to be in the same class, as long as

they have the same type of relationship predicates. Consequently, the im-

ages in each class are highly diverse – some images in the same class may

even share nothing in common, e.g. “mountain-near-river” and “person-near-

dog”. See Figure 5.1 for an illustration. Our experiments suggest that even

with the model capacity of deep networks, handling the intra-class diversity

at this level remains very difficult.

In this work, we develop a new framework to tackle the problem of visual

relationship detection. This framework formulates the prediction output as

a triplet in the form of (subject, predicate, object), and jointly infers their

class labels by exploiting two kinds of relations among them, namely spa-

tial configuration and statistical dependency. Such relations are ubiquitous,

informative, and more importantly they are often more reliable than visual

appearance.

It is worth emphasizing that the formulation of the proposed model is

significantly different from previous relational models such as conditional

random fields (CRFs) [65]. Particularly, in our formulation, the statistical

inference procedure is embedded into a deep neural network called Deep Re-
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lational Network (DR-Net) via iteration unrolling. The formulation of DR-

Net moves beyond the conventional scope, extending the expressive power of

Deep Neural Networks (DNNs) to relational modeling. This new way of for-

mulation also allows the model parameters to be learned in a discriminative

fashion, using the latest techniques in deep learning. On two large datasets,

the proposed framework outperforms not only the classification-based meth-

ods but also the CRFs based on deep potentials.

To sum up, the major contributions of this work consist in two aspects:

(1) DR-Net, a novel formulation that combines the strengths of statistical

models and deep learning; and (2) an effective framework for visual relation-

ship detection which brings the state-of-the-art to a new level.

5.2 Related Work

Over the past decade, there have been a number of studies that explore

the use of visual relationships. Earlier efforts often focus on specific types

of relationships, such as positional relations [38, 49, 30, 15, 59] and actions

(i.e. interactions between objects) [124, 31, 93, 111, 91, 97, 37, 4, 23, 25, 121].

In most of these studies, relationships are usually extracted using simple

heuristics or hand-crafted features, and used as an auxiliary components to

facilitate other tasks, such as object recognition [29, 107, 61, 14, 64, 103,

90, 27, 101], image classification and retrieval [82, 32], scene understanding

and generation [135, 43, 11, 125, 46, 34, 8], as well as text grounding[88,

52, 96]. They are essentially different from our work, which aims to provide

a method dedicated to generic visual relationship detection. On a unified

framework, our method can recognize a wide variety of relationships, such
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as relative positions (“behind”), actions (“eat”), functionals (“part of”), and

comparisons (“taller than”).

Recent years have seen new methods developed specifically for detecting

visual relationships. An important family of methods [18, 22, 102] consider

each distinct combination of object categories and relationship predicates as

a distinct class (often referred to as a visual phrase). Such methods would

face difficulties in a general context, where the number of such combina-

tions can be very large. An alternative paradigm that considers relationship

predicates and object categories separately becomes more popular in recent

efforts. Vedantam et al [114] presented a study along this line using synthetic

clip-arts. This work, however, relies on multiple synthetic attributes that are

difficult to obtain from natural images. Fang et al [24] proposed to incor-

porate relationships in an image captioning framework. This work treats

object categories and relationship predicates uniformly as words, and does

not discuss how to tackle the various challenges in relationship detection.

The method proposed recently by Lu et al [77] is the most related. In

this method, pairs of detected objects are fed to a classifier, which combines

appearance features and a language prior for relationship recognition. Our

method differs in two aspects: (1) We exploit both spatial configurations and

statistical dependencies among relationship predicates, subjects, and objects,

via a Deep Relational Network, instead of simply fusing them as different

features. (2) Our framework, from representation learning to relational mod-

eling, is integrated into a single network that is learned in an end-to-end fash-

ion. Experiments show that the proposed framework performs substantially

better in all different task settings. For example, on two large datasets, the
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Figure 5.2: The proposed framework for visual relationship detection. Given an
image, it first employs an object detector to locate individual objects. Each object
also comes with an appearance feature. For each pair of objects, the corresponding
local regions and the spatial masks will be extracted, which, together with the
appearance features of individual objects, will be fed to the DR-Net. The DR-Net
will jointly analyze all aspects and output qs, qr, and qo, the predicted category
probabilities for each component of the triplet. Finally, the triplet (s, r, o) will be
derived by choosing the most probable categories for each component.

Recall@50 of relationship predicate recognition are respectively raised from

47.9% to 80.8% and from 53.5% to 88.3%.

5.3 Visual Relationship Detection

Visual relationships play a crucial role in image understanding. Whereas

a relationship may involve multiple parties in general, many important rela-

tionships, including relative positions (e.g. “above”) and actions (e.g. “ride”)

occur between exactly two objects. In this paper, we focus on such rela-

tionships. In particular, we follow a widely adopted convention [102, 77]

and characterize each visual relationship by a triplet in the form of (s, r, o),

e.g. (girl, on, horse) and (man, eat, apple). Here, s, r, and o respectively

denote the subject category, the relationship predicate, and the object cate-

gory. The task is to locate all visual relationships from a given image, and
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infer the triplets.

5.3.1 Overall Pipeline

As mentioned, there are two different paradigms for relationship detec-

tion: one is to consider each distinct triplet as a different category (also

known as visual phrases [102]), the other is to recognize each component

individually. The former is not particularly suitable for generic applications,

due to difficulties like the excessively large number of classes and the imbal-

ance among them. In this work, we adopt the latter paradigm and aim to

take its performance to a next level. Particularly, we focus on developing

a new method that can effectively capture the rich relations (both spatial

and semantic) among the three components in a triplet and exploit them to

improve the prediction accuracy.

As shown in Figure 5.2, the overall pipeline of our framework comprises

three stages, as described below.

(1) Object detection. Given an image, we use an object detector to

locate a set of candidate objects. In this work, we use Faster RCNN [94]

for this purpose. Each candidate object comes with a bounding box and

an appearance feature, which will be used in the joint recognition stage for

predicting the object category.

(2) Pair filtering. The next step is to produce a set of object pairs from

the detected objects. With n detected objects, we can form n(n − 1) pairs.

We found that a considerable portion of these pairs are obviously meaningless

and it is unlikely to recognize important relationships therefrom. Hence, we

introduce a low-cost neural network to filter out such pairs, so as to reduce
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the computational cost of the next stage. This filter takes into account both

the spatial configurations (e.g. objects too far away are unlikely to be related)

and object categories (e.g. certain objects are unlikely to form a meaningful

relationship).

(3) Joint recognition. Each retained pair of objects will be fed to

the joint recognition module. Taking into account multiple factors and their

relations, this module will produce a triplet as the output.

5.3.2 Joint Recognition

In joint recognition, multiple factors are taken into consideration. These

factors are presented in detail below.

(1) Appearance. As mentioned, each detected object comes with an

appearance feature, which can be used to infer its category. In addition, the

type of the relationship may also be reflected in an image visually. To utilize

this information, we extract an appearance feature for each candidate pair

of objects, by applying a CNN [105, 41] to an enclosing box, i.e. a bounding

box that encompasses both objects with a small margin. The appearance

inside the enclosing box captures not only the objects themselves but also

the surrounding context, which is often useful when reasoning about the

relationships.

(2) Spatial Configurations. The relationship between two objects is

also reflected by the spatial configurations between them, e.g. their relative

positions and relative sizes. Such cues are complementary to the appearance

of individual objects, and resilient to photometric variations, e.g. the changes

in illumination.
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Figure 5.3: This figure illustrates the process of spatial feature vector generation.
The structure of our spatial module is also presented in this figure.

To leverage the spatial configurations, we are facing a question: how to

represent it in a computer? Previous work [49] suggests a list of geometric

measurements. While simple, this way may risk missing certain aspects of

the configurations. In this work, we instead use dual spatial masks as the

representation, which comprise two binary masks, one for the subject and the

other for the object. The masks are derived from the bounding boxes and

may overlap with each other, as shown in Figure 5.3. The masks are down-

sampled to the size 32 × 32, which we found empirically is a good balance

between fidelity and cost. (We have tried mask sizes of 8, 16, 32, 64 and 128,

resulting top-1 recalls are 0.47, 0.48, 0.50, 0.51 and 0.51.) The dual spatial

masks for each candidate pair will be compressed into a 64-dimensional vector

via three convolutional layers.

(3) Statistical Relations. In a triplet (s, r, o), there exist strong sta-

tistical dependencies between the relationship predicate r and the object

categories s and o. For example, (cat, eat, fish) is common, while (fish, eat,

cat) or (cat, ride, fish) is very unlikely. On Visual Genome, the entropy

of the prior distribution p(r) is 2.88, while that of the conditional distribu-
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tion p(r|s, o) is 1.21. This difference is a clear evidence of the statistical

dependency.

To exploit the statistical relations, we propose Deep Relational Network

(DR-Net), a novel formulation that incorporates statistical relational mod-

eling into a deep neural network framework. In our experiments, we found

that the use of such relations can effectively resolve the ambiguities caused by

visual or spatial cues, thus substantially improving the prediction accuracy.

(4) Integrated Prediction. Next, we describe how these factors are ac-

tually combined. As shown in Figure 5.2, for each candidate pair, the frame-

work extracts the appearance feature and the spatial feature, respectively

via the appearance module and the spatial module. These two features are

subsequently concatenated and further compressed via two fully-connected

layers. This compressed pair feature, together with the appearance features

of individual objects will be fed to the DR-Net for joint inference. Through

multiple inference units, whose parameters capture the statistical relations

among triplet components, the DR-Net will output the posterior probabilities

of s, r, and o. Finally, the framework produces the prediction by choosing

the most probable classes for each of these components.

In the training, all stages in our framework, namely object detection, pair

filtering and joint recognition are trained respectively. As for joint recogni-

tion, different factors will be integrated into a single network and jointly

fine-tuned to maximize the joint probability of the ground-truth triplets.
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5.4 Deep Relational Network

As shown above, there exist strong statistical relations among the object

categories s and o and the relationship predicates r. Hence, to accurately

recognize visual relationships, it is important to exploit such information,

especially when the visual cues are ambiguous.

5.4.1 Revisit of CRF

The Conditional Random Field (CRF) [65] is a classical formulation to

incorporate statistical relations into a discriminative task. Specifically, for

the task of recognizing visual relationships, the CRF can be formulated as

p(r, s, o|xr,xs,xo) =
1

Z
exp (Φ(r, s, o|xr,xs,xo;W)) . (5.1)

Here, xr is the compressed pair feature that combines both the appearance of

the enclosing box and the spatial configurations; xs and xo are the appearance

features respectively for the subject and the object; W denotes the model

parameters; and Z is the normalizing constant, whose value depends on the

parameters W. The joint potential Φ can be expressed as a sum of individual

potentials as

Φ = ψa(s|xs;Wa) + ψa(o|xo;Wa) + ψr(r|xr;Wr)

+ ϕrs(r, s|Wrs) + ϕro(r, o|Wro) + ϕso(s, o|Wso). (5.2)

Here, the unary potential ψa associates individual objects with their appear-

ance; ψr associates the relationship predicate with the feature xr; while the

binary potentials ϕrs, ϕro and ϕso capture the statistical relations among the
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relationship predicate r, the subject category s, and the object category o.

CRF formulations like this have seen wide adoption in computer vision

literatures [132, 89] over the past decade, and have been shown to be a

viable way to capture statistical dependencies. However, the success of CRF

is limited by several issues: First, learning CRF requires computing the

normalizing constant Z, which can be very expensive and even intractable,

especially when cycles exist in the underlying graph, like the formulation

above. Hence, approximations are often used to circumvent this problem, but

they sometimes result in poor estimates. Second, when cyclic dependencies

are present, variational inference schemes such as mean-field methods [56] and

loopy belief propagation [86], are widely used to simplify the computation.

This often leaves a gap between the objective of inference and that of training,

thus leading to suboptimal results.

5.4.2 From CRF to DR-Net

Inspired by the success of deep neural networks [41, 105], we explore an

alternative approach to relational modeling, that is, to unroll the inference

into a feed-forward network.

Consider the CRF formulated above. Given s and o, then the posterior

distribution of r is given by

p(r|s, o,xr; W) ∝ exp (ψr(r|xr; Wr)+

ϕrs(r, s|Wrs) + ϕro(r, o|Wro)) . (5.3)

In typical formulations, ψr(r|xr) is often devised to be a linear functional of



CHAPTER 5. IMAGES AS SCENE-GRAPHS: DETECTING VISUAL
RELATIONSHIPS WITH DR-NET 81

xr for each r. Let Wrs and Wro be matrices such that Wrs(r, s) = ϕrs(r, s)

and Wro(r, o) = ϕro(r, o), and let qr be a vector of the posterior probabilities

for r, then the formula above can be rewritten as1

qr = σ (Wrxr + Wrs1s + Wro1o) . (5.4)

Here, σ denotes the softmax function. 1s and 1o are one-hot indicator vectors

for s and o. It can be shown that this is the optima to the optimization

problem below:

max
q

Eq [ψr(r|xr; Wr)+

ϕrs(r, s|Wrs) + ϕro(r, o|Wro)] +Hq(q). (5.5)

Based on this optimization problem, the solution given in Eq.(5.4) can be

generalized to the case where s and o are not deterministic and the knowledge

of them are instead given by probabilistic vectors qs and qo, as follows:

qr = σ (Wrxr + Wrsqs + Wroqo) . (5.6)

Similar derivation also applies to the inference of s and o conditioned on

other components. Together, we can obtain a set of updating formulas as

1A proof of this statement is provided in the additional materials.
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below:

q′s = σ (Waxs + Wsrqr + Wsoqo) ,

q′r = σ (Wrxr + Wrsqs + Wroqo) ,

q′o = σ (Waxo + Wosqs + Worqr) . (5.7)

These formulas take the current probability vectors qs, qr, and qo as inputs,

and output the updated versions q′s, q′r and q′o. From the perspective of

neural networks, these formulas can also be viewed as a computing layer. In

this sense, the iterative updating procedure can be unrolled into a network

that comprises a sequence of such layers. We call this network the Deep

Relational Network (DR-Net), as it relates multiple variables, and refer to

its building blocks, i.e. the computing layers mentioned above, as inference

units.

Discussion DR-Net is for relational modeling, which is different from those

methods for feature/modality combination. Specifically, object categories

and relationship predicates are two distinct domains that are statistically

related. The former is not an extra feature of the latter; while the latter is

not a feature of the former either. DR-Net captures the relations between

them via the links in the inference units, rather than combining them using

a fusion layer.

The basic formulation in Eq.(5.7) comes with several symmetry con-

straints: Wsr = WT
rs, Wso = WT

os, and Wro = WT
or. In addition, all

inference units share the same set of weights. However, from a pragmatic

standpoint, one may also consider lifting these constraints, e.g. allowing each
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inference units to have their own weights. This may potentially increase the

expressive power of the network. We will compare these two settings, namely

with and without weight sharing, in our experiments.

A DR-Net can also be considered as a special form of the Recurrent Neu-

ral Network (RNN) – at each step it takes in a fixed set of inputs, i.e. the

observed features xs, xr, and xo, and refines the estimates of posterior prob-

abilities.

5.4.3 Comparison with Other Formulations

There are previous efforts that also explore the incorporation of relational

structures with deep networks [12, 132, 104, 6]. The deep structured models

presented in [12, 104, 119] combine a deep network with an MRF or CRF on

top to capture the relational structures among their outputs. In these works,

classical message-passing methods are used in training and inference. Zheng

et al [132] proposed a framework for image segmentation, which adopts an

apparently similar idea, that is, to reformulate a structured model into a

neural network by turning inference updates into neural layers. In addition

to the fact that this work is in a fundamentally different domain (high-level

understanding vs. low-level vision), they focused on capturing dependen-

cies among elements in the same domain, e.g. those among pixel-wise labels.

From a technical view, DR-Net is more flexible, e.g. it can handle graphs

with nodes of different cardinalities and edges of different types. In [132],

the message passing among pixels is approximately instantiated using CNN

filters and this is primarily suited for grid structures; while in DR-Net, the

inference steps are exactly reproduced using fully-connected layers. Hence,
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Predicate Recognition Union Box Detection Two Boxes Detection
Recall@50 Recall@100 Recall@50 Recall@100 Recall@50 Recall@100

V
R
D

VP [102] 0.97 1.91 0.04 0.07 - -
Joint-CNN[24] 1.47 2.03 0.07 0.09 0.07 0.09

VR [77] 47.87 47.87 16.17 17.03 13.86 14.70
DR-Net 80.78 81.90 19.02 22.85 16.94 20.20

DR-Net + pair filter - - 19.93 23.45 17.73 20.88

sV
G

VP [102] 0.63 0.87 0.01 0.01 - -
Joint-CNN[24] 3.06 3.99 1.24 1.60 1.21 1.58

VR [77] 53.49 54.05 13.80 17.39 11.79 14.84
DR-Net 88.26 91.26 20.28 25.74 17.51 22.23

DR-Net + pair filter - - 23.95 27.57 20.79 23.76

Table 5.1: Comparison with baseline methods, using Recall@50 and Recall@100
as the metrics. We use “-” to indicate “not applicable”. For example, no results
are reported for DR-Net + pair filter on Predicate Recognition, as in this setting,
pairs are given, and thus pair filtering can not be applied. Also, no results are
reported for VP on Two Boxes detection, as VP detects the entire instance as a
single entity.

A1 A2 S A1S A1SC A1SD A2SD A2SDF

V
R
D Predicate Recognition 63.39 65.93 64.72 71.81 72.77 80.66 80.78 -

Union Box Detection 12.01 12.56 13.76 16.04 16.37 18.15 19.02 19.93
Two Boxes Detection 10.71 11.22 12.16 14.38 14.66 16.12 16.94 17.73

sV
G

Predicate Recognition 72.13 72.54 75.18 79.10 79.18 88.00 88.26 -
Union Box Detection 13.24 13.84 14.01 16.04 16.08 20.21 20.28 23.95
Two Boxes Detection 11.35 11.98 12.07 13.77 13.81 17.42 17.51 20.79

Table 5.2: Comparison of different variants of the proposed method, using Re-
call@50 as the metric.

it can be applied to capture relationships of arbitrary structures. SPENs

introduced in [6] define a neural network serving as an energy function over

observed features for multi-label classification. SPENs are used to measure

the consistency of configurations, while DR-Net is used to find a good con-

figuration of variables. Also, no inference unrolling is involved in SPENs

learning.
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VR[77] (sky, in, water) (giraffe, have, tree) (woman, ride, bicycle) (cat, have, hat)
A1 (sky, on, water) (giraffe, have, tree) (woman, behind, bicycle) (cat, on, hat)
S (sky, above, water) (giraffe, in, tree) (woman, wear, bicycle) (cat, have, hat)

A1S (sky, above, water) (giraffe, behind, tree) (woman, wear, bicycle) (cat, have, hat)
A1SC (sky, above, water) (giraffe, behind, tree) (woman, ride, bicycle) (cat, have, hat)
A1SD (sky, above, water) (giraffe, behind, tree) (woman, ride, bicycle) (cat, wear, hat)

Table 5.3: This table lists predicate recognition results for some object pairs.
Images containing these pairs are listed in the first row, where the red and green
boxes respectively correspond to the subjects and the objects. The most probable
predicate predicted by different methods are listed in the following rows, in which
black indicates wrong prediction and red indicates correct prediction.

5.5 Experiments

We tested our model on two datasets: (1) VRD: the dataset used in [77],

containing 5, 000 images and 37, 993 visual relationship instances that belong

to 6, 672 triplet types. We follow the train/test split in [77]. (2) sVG:

a substantially larger subset constructed from Visual Genome [58]. sVG

contains 108K images and 998K relationship instances that belong to 74, 361

triplet types. All instances are randomly partitioned into disjoint training

and testing sets, which respectively contain 799K and 199K instances.

5.5.1 Experiment Settings

Model training. In all experiments, we trained our model using Caffe[48].

The appearance module is initialized with a model pre-trained on ImageNet,

while the spatial module and the DR-Net are initialized randomly. After
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initialization, the entire network is jointly optimized using SGD.

Performance metrics. Following [77], we use Recall@K as the major per-

formance metric, which is the the fraction of ground-truth instances that are

correctly recalled in top K predictions. Particularly, we report Recall@100

and Recall@50 in our experiments. The reason of using recall instead of pre-

cision is that the annotations are incomplete, where some true relationships

might be missing.

Task settings. Like in [77], we studied three task settings: (1) Predicate

recognition: this task focuses on the accuracy of predicate recognition,

where the labels and the locations of both the subject and object are given.

(2) Union box detection: this task treats the whole triplet as a union

bounding box. A prediction is considered correct if all three elements in a

triplet (s, r, o) are correctly recognized, and the IoU between the predicted

box and the ground-truth is above 0.5. (3) Two boxes detection: this

is similar to the one above, except that it requires the IoU metrics for the

subject and the object are both above 0.5. This is relatively more challenging.

5.5.2 Comparative Results

Compare with baselines. We compared our method with the following

methods under all three task settings outlined above. (1) Visual Phrase(VP) [102]:

a representative approach that treats each distinct triplet as a different class.

and employs a DPM detector [26] for each class. (2) Joint-CNN [24]: a

neural network [105] that has 2N+K-way outputs, jointly predicts the class

responses for subject, object, and relationship predicate. (3) Visual Re-



CHAPTER 5. IMAGES AS SCENE-GRAPHS: DETECTING VISUAL
RELATIONSHIPS WITH DR-NET 87

lationship (VR) [77]: This is the state-of-the-art and is the most closely

related work.

Table 5.1 compares the results. On both datasets, we observed: (1)

VP [102] performs very poorly, failing in most cases, as it is difficult to cope

with such a huge and imbalanced class space. (2) Joint-CNN [24] also works

poorly, as it’s hard for the CNN to learn a common feature representation for

both relationship predicates and objects. (3) VR [77] performs substantially

better than the two above. However, the performance remains unsatisfactory.

(4) The proposed method outperforms the state-of-the-art method VR [77]

by a considerable margin in all three tasks. Compared to VR, it improves the

Recall@100 of predicate recognition by over 30% on both datasets. Thanks to

the remarkably improved accuracy in recognizing the relationship predicates,

the performance gains on the other two tasks are also significant. (5) Despite

the significant gain compared to others, the recalls on union box detection

and two boxes detection remains weak. This is primarily ascribed to the

limitations of the object detectors. As shown in Figure 5.4, we observe that

the object detector can only obtain about 30% of object recall, measured by

Recall@50. To improve on these tasks, a more sophisticated object detector

is needed.

Compare different configs. We also compared different variants of the

proposed method, in order to identify the contributions of individual compo-

nents listed below: (1)Pair (F)ilter: the pair filter discussed in section 5.3,

used to filter out object pairs with trivial relationships. (2)(A)ppearance

Module: the appearance module, which has two versions, A1: based on

VGG16 [105], which is also the network used in VR [77], A2: based on
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Figure 5.4: This figure shows the performance on the union-box detection task
with different IoU thresholds.

ResNet101 [41]. (3)(S)patial Module: the network to capture the spatial

configs, as mentioned in section 5.3. (4)(C)RF: a classical CRF formula-

tion, used as a replacement of the DR-Net to capture statistical dependen-

cies. (5)(D)R-Net: the DR-Net discussed in section 5.4. The name of a

configuration is the concatenation of abbrevations of involved components,

e.g., the configuration named A1SC contains an appearance module based

on VGG16, a spatial module, and a CRF.

In Table 5.2, we compared A1, A2, S, A1S, A1SC, A1SD, A2SD and

A2SDF. The results show: (1) Using better networks (ResNet-101 vs. VGG16)

can moderately improve the performance. However, even with state-of-the-

art network A2, visual relationship detection could not be done effectively

using appearance information alone. (2) The combination of appearance and

spatial configs considerably outperforms each component alone, suggesting

that visual appearances and spatial configurations are complementary to each

other. (3) The statistical dependencies are important. However, CRF is not
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Figure 5.5: This figure shows the recall curves of two possible settings in DR-Net.
In each setting, we change the number of inference units to see how the recall
changes.

able to effectively exploit them. With the use of DR-Net, the performance

gains are significant. We evaluated the perplexities of the predictions for

our model with and without DR-Net, which are 2.64 and 3.08. These results

show the benefit of exploiting statistical dependencies for joint recognition.

Table 5.3 further shows the predicted relationships on several example

images. The first two columns show that the incorporation of spatial con-

figuration can help detect positional relationships. The third column shows

that the use of statistical dependencies can help to resolve the ambiguities in

the relationship predicates. Finally, the fourth column shows that for subtle

cases, DR-Net can identify the relationship predicate more accurately than

the config that relies on CRF.

Compare architectural choices. This study is to compare the effect of

different choices in the DR-Net architecture. The choices we study here

include: the number of inference units and whether the relational weights

are shared across these units. The comparison is conducted on sVG.

Figure 5.5 shows the resultant curves. From the results we can see: (1) On
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Average Similarity

VR [77] A1 S A1S A1SD

0.2076 0.2081 0.2114 0.2170 0.2271

Table 5.4: This table lists the average similarities between generated scene graphs
and the ground truth. All methods are named after their visual relationship de-
tectors.

both settings, the recall increases as the number of inference units increases.

The best model can improve the recall from 56% to 73%, as the number of

inference units increases. With weight sharing, the recall saturates with 12

inference units; while without sharing, the recall increases more rapidly, and

saturates when it has 8 inference units. (2) Generally, with same number

of inference units, the network without weight sharing performs relatively

better, due to the greater expressive power.

5.5.3 Scene Graph Generation

Our model for visual relationship detection can be used for scene graph

generation, which can serve as the basis for many tasks, e.g. image captioning[2,

1], visual question answering[118] and image retrieval[49].

The task here is to generate a directed graph for each image that captures

objects, object attributes, and the relationships between them [49]. See

Figure 5.6 for an illustration. We compared several configs of our method,

including A1, S, A1S and A1SD, with VR [77] on this task, on a dataset

sVG-a, which extends sVG with attribute annotations. All methods are

augmented with an attribute recognizer.
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Figure 5.6: This figure illustrates some images and their corresponding scene
graphs. The scene graphs are generated according to section 5.5.3. In the scene
graphs, the black edges indicate wrong prediction, and the red edges indicate
correct prediction.

For each test image, we measure the similarity [10] between the generated

scene graph and the ground truth. We report average similarity over all test

images as our metric. Table 5.4 compares the results of these approaches,

where A1SD achieves the best result. This comparison indicates that with

better relationship detection, one can obtain better scene graphs.
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5.6 Additional Materials

5.6.1 Proof of Eq.(5.4.2) in Section 5.4

The posterior distribution of r is given by

p(r|s, o,xr; W) ∝ exp(ψr(r|xr; Wr)+

φrs(r, s|Wrs) + φro(r, o|Wro)). (5.8)

Here, we have

1. The unary potential ψr(r|xr) is assumed to be a linear functional of xr

for each predicate r, then we can write ψr(r|xr) := aTr xr. Combining

the linear functionals for all categories, we can form a coefficient matrix

Wr = [aTr1 , a
T
r2
, ..., aTr|R|

]. Thus, ψr(r|xr; Wr) = 1Tr Wrxr.

2. Both r and s be categorical variables. Hence, the potential φrs can

be represented by a matrix of size |R| × |O|, where R is the set of

all relationship predicates while O is the set of all object categories.

Particularly, let 1r and 1s be indicator vectors for r and s, then we

have φrs(r, s|Wrs) = 1Tr Wrs1s.

3. Likewise, the potential φro can also be characterized by a matrix Wro,

such that φro(r, o|Wro) = 1Tr Wro1o.

Let qr(r) = p(r|s, o,xr; W), then Eq.(5.8) can be rewritten:

qr(r) ∝ exp
(
1Tr Wrxr + 1Tr Wrs1s + 1Tr Wro1o

)
(5.9)

= exp
(
1Tr (Wrxr + Wrs1s + Wro1o)

)
. (5.10)
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Figure 5.7: The network for pair filtering.

This equation can be interpreted as follows. The expression e = Wrxr +

Wrs1s + Wro1o is a vector of length |R|, and the operator 1Tr e takes the

r-th entry. qr is comprised of the normalized exponents of these entries, and

thus can be written as

qr = σ(Wrxr + Wrs1s + Wro1o) (5.11)

Here, σ is the softmax function that produces a vector of normalized expo-

nents. This completes the proof.

5.6.2 Pair Filter

As mentioned in the paper, we use a simple network to filter out part

of the pairs before feeding them to the main DR-Net for further analysis.

Here are some technical details about the network. Figure 5.7 shows the

architecture of this network. The network comprises three convolutional

layers followed by three fully-connected layers. These layers are interleaved

with ReLU activations. It is designed to be relatively shallow, so that it

can perform the filtering with low cost. To train this network, we randomly
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sample pairs of bounding boxes from each training image, treating those with

0.5 IoU (or above) with any ground-truth pairs as positive samples, and the

rest as negative samples.

In testing, from n detected objects, we can form n(n − 1) pairs. We

use this filter to remove 40% of them, retaining 60%. This filtering rate was

chosen empirically based on the overall empirical performance on a validation

set.



Chapter 6

A Neural Compositional

Captioning Model

6.1 Introduction

Image captioning, the task to generate short descriptions for given im-

ages, has received increasing attention in recent years. State-of-the-art mod-

els [78, 3, 115, 122] mostly adopt the encoder-decoder paradigm [115], where

the content of the given image is first encoded via a convolutional network

into a feature vector, which is then decoded into a caption via a recurrent

network. In particular, the words in the caption are produced in a sequen-

tial manner – the choice of each word depends on both the preceding word

and the image feature. Despite its simplicity and the effectiveness shown on

various benchmarks [73, 128], the sequential model has a fundamental prob-

lem, namely, it does not reflect the inherent hierarchical structure of natural

languages [80, 9].

As a result, sequential models have several significant drawbacks. First,

95
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a large building with a clock tower a building with a clock on the side of it a building with a clock on the side of it

Figure 6.1: This figure shows three test images in MS-COCO [73] with captions
generated by the neural image captioner [115], which contain n-gram building with
a clock that appeared frequently in the training set but is not semantically correct
for these images.

they rely excessively on n-gram statistics rather than hierarchical depen-

dencies among words in a caption. Second, such models usually favor the

frequent n-grams [16] in the training set, which, as shown in Figure 6.1,

may lead to captions that are only correct syntactically but not semanti-

cally, containing semantic concepts that are irrelevant to the conditioned

image. Third, the entanglement of syntatic rules and semantics obscures the

dependency structure and makes the model difficult to generalize.

To tackle these issues, we propose a new paradigm for image captioning,

where the extraction of semantics (i.e. what to say) and the construction

of syntactically correct captions (i.e. how to say) are decomposed into two

stages. Specifically, it derives an explicit representation of the semantic con-

tent of the given image, which comprises a set of noun-phrases, e.g. a white

cat, a cloudy sky or two men. With these noun-phrases as the basis, it then

proceeds to construct the caption through recursive composition until a com-

plete caption is obtained. In particular, at each step of the composition, a

higher-level phrase is formed by joining two selected sub-phrases via a con-

necting phrase. It is noteworthy that the compositional procedure described

above is not a hand-crafted algorithm. Instead, it consists of two parametric

modular nets, a connecting module for phrase composition and an evaluation
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module for deciding the completeness of phrases.

The proposed paradigm has several key advantages compared to conven-

tional captioning models: (1) The factorization of semantics and syntax not

only better preserves the semantic content of the given image but also makes

caption generation easy to interpret and control. (2) The recursive composi-

tion procedure naturally reflects the inherent structures of natural language

and allows the hierarchical dependencies among words and phrases to be

captured. Through a series of ablative studies, we show that the proposed

paradigm can effectively increase the diversity of the generated captions while

preserving semantic correctness. It also generalizes better to new data and

can maintain reasonably good performance when the number of available

training data is small.

6.2 Related Work

Literature in image captioning is vast, with the increased interest received

in the neural network era. The early approaches were bottom-up and detec-

tion based, where a set of visual concepts such as objects and attributes

were extracted from images [25, 60]. These concepts were then assembled

into captions by filling the blanks in pre-defined templates [60, 68], learned

templates [72], or served as anchors to retrieve the most similar captions from

the training set [20, 25].

Recent works on image captioning adopt an alternative paradigm, which

applies convolutional neural networks [40] as image representation, followed

by recurrent neural networks [42] for caption generation. Specifically, Vinyals

et al [115] proposed the neural image captioner, which represents the input
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image with a single feature vector, and uses an LSTM [42] conditioned on

this vector to generate words one by one. Xu et al [122] extended their work

by representing the input image with a set of feature vectors, and applied

an attention mechanism to these vectors at every time step of the recurrent

decoder in order to extract the most relevant image information. Lu et

al [78] adjusted the attention computation to also attend to the already

generated text. Anderson et al [3] added an additional LSTM to better

control the attention computation. Some of the recent approaches directly

extract phrases or semantic words from the input image. Yao et al [126]

predicted the occurrences of frequent training words, where the prediction is

fed into the LSTM as an additional feature vector. Tan et al [110] treated

noun-phrases as hyper-words and added them into the vocabulary, such that

the decoder was able to produce a full noun-phrase in one time step instead

of a single word. In [74], the authors proposed a hierarchical approach where

one LSTM decides on the phrases to produce, while the second-level LSTM

produced words for each phrase.

Despite the improvement over the model architectures, all these approaches

generate captions sequentially. This tends to favor frequent n-grams [16],

leading to issues such as incorrect semantic coverage, and lack of diversity.

On the contrary, our proposed paradigm proceeds in a bottom-up manner, by

representing the input image with a set of noun-phrases, and then constructs

captions according to a recursive composition procedure. With such explicit

disentanglement between semantics and syntax, the recursive composition

procedure preserves semantics more effectively, requires less data to learn,

and also leads to more diverse captions.
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Noun-phrase Extraction

{a field, …, a small dog, …, a football, … } Candidate Pool  {... }

(a small dog, a football)

a small dog playing with a football

The Connecting Module

a small dog playing with a football in a field

The Evaluation Module

Is a complete caption ?

Update Pool 

and Repeat

(a) Explicit Representation of Semantics (b) CompCap: Compositional Caption Construction

Figure 6.2: An overview of the proposed compositional paradigm. A set of noun-
phrases is extracted from the input image first, serving as the initial pool of phrases
for the compositional generation procedure. The procedure then recursively uses
a connecting module to compose two phrases from the pool into a longer phrase,
until an evaluation module determines that a complete caption is obtained.

Work conceptually related to ours is by Kuznetsova et al [63], which mines

four types of phrases including noun-phrases from the training captions, and

generates captions by selecting one phrase from each category and composes

them via dynamic programming. Since the composition procedure is not

recursive, it can only generate captions containing a single object, thus lim-

iting the versatile nature of image description. In our work, any number of

phrases can be composed, and we exploit powerful neural networks to learn

plausible compositions.

6.3 Compositional Captioning

The structure of natural language is inherently hierarchical [9, 80], where

the typical parsing of sentence takes the form of trees [55, 87, 108]. Hence,

it seems natural to also produce captions following such hierarchical struc-
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ture. Specifically, we propose a two-stage framework for image captioning,

as shown in Figure 6.2. Given an image, we first derive a set of noun-phrases

as an explicit semantic representation. We then construct the caption in a

bottom-up manner, via a recursive compositional procedure which we refer

to as CompCap. This procedure can be considered as an inverse of the sen-

tence parsing process. Unlike mainstream captioning models that primarily

rely on the n-gram statistics among consecutive words, CompCap can take

into account the nonsequential dependencies among words and phrases of a

sentence. In what follows, we will present these two stages in more detail.

6.3.1 Explicit Representation of Semantics

Conventional captioning methods usually encode the content of the given

image into feature vectors, which are often difficult to interpret. In our

framework, we represent the image semantics explicitly by a set of noun-

phrases, e.g. “a black cat”, “a cloudy sky” and “two boys”. These noun-

phrases can capture not only the object categories but also the associated

attributes.

Next, we briefly introduce how we extract such noun-phrases from the

input image. In our study, we found that the number of distinct noun-phrases

in a dataset is significantly smaller than the number of images. For example,

MS-COCO [73] contains 120K images but only about 3K distinct noun-

phrases in the associated captions. Given this observation, it is reasonable

to formalize the task of noun-phrase extraction as a multi-label classification

problem.

Specifically, we derive a list of distinct noun-phrases {NP1, NP2, ..., NPK}
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from the training captions by parsing the captions and selecting those noun-

phrases that occur for more than 50 times. We treat each selected noun-

phrase as a class. Given an image I, we first extract the visual feature v via a

Convolutional Neural Network as v = CNN(I), and further encode it via two

fully-connected layers as x = F (v). We then perform binary classification

for each noun-phrase NPk as SC(NPk|I) = σ(wT
k x), where wk is the weight

vector corresponding to the class NPk and σ denotes the sigmoid function.

Given {SC(NPk|I)}k, the scores for individual noun-phrases, we choose

to represent the input image using n of them with top scores. While the

selected noun-phrases may contain semantically similar concepts, we further

prune this set through Semantic Non-Maximum Suppression, where only

those noun-phrases whose scores are the maximum among similar phrases

are retained 1.

6.3.2 Recursive Composition of Captions

Starting with a set of noun-phrases, we construct the caption through

a recursive compositional procedure called CompCap. We first provide an

overview, and describe details of all the components in the following para-

graphs.

At each step, CompCap maintains a phrase pool P , and scans all ordered

pairs of phrases from P . For each ordered pair P (l) and P (r), a Connecting

Module (C-Module) is applied to generate a sequence of words, denoted as

P (m), to connect the two phrases in a plausible way. This yields a longer

phrase in the form of P (l) ⊕ P (m) ⊕ P (r), where ⊕ denotes the operation of

1 The details of this procedure are provided in the Section 6.5.
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sequence concatenation. The C-Module also computes a connecting score for

P (l) ⊕ P (m) ⊕ P (r). Among all phrases that can be composed from scanned

pairs, we choose the one with the maximum connecting score as the new

phrase Pnew. A parametric module could also be used to determine Pnew.

Subsequently, we apply an Evaluation Module (E-Module) to assess whether

Pnew is a complete caption. If Pnew is determined to be complete, we take

it as the resulting caption; otherwise, we update the pool P by replacing

the corresponding constituents P (l) and P (r) with Pnew, and invoke the pair

selection and connection process again based on the updated pool. The pro-

cedure continues until a complete caption is obtained or only a single phrase

remains in P .

We next introduce the connecting and the evaluation module, respec-

tively.

The Connecting Module. The Connecting Module (C-Module) aims to

select a connecting phrase P (m) given both the left and right phrases P (l) and

P (r), and to evaluate the connecting score S(P (m) | P (l), P (r), I). While this

task is closely related to the task of filling in the blanks of captions [130],

we empirically found that the conventional way of using an LSTM to decode

the intermediate words fails. This may be due to various reasons, e.g. we

have to deal with not only complete captions but also parts thereof, which

constitute a significantly larger space. In this work, we adopt an alternative

strategy, namely, to treat the generation of connecting phrases as a clas-

sification problem. This is motivated by the observation that the number

of distinct connecting phrases is actually limited in the proposed paradigm,

since semantic words such as nouns and adjectives are not involved in the



CHAPTER 6. A NEURAL COMPOSITIONAL CAPTIONING MODEL 103

connecting phrases. For example, in MS-COCO [73], there are over 1 million

samples collected for the connecting module, which contain only about 1, 000

distinct connecting phrases.

Specifically, we mine a set of distinct connecting sequences from the train-

ing captions, denoted as {P (m)
1 , . . . , P

(m)
L }, and treat them as different classes.

This can be done by walking along the parsing trees of the captions and

extracting the intermediate sequences between noun-phrases or the longer

connected phrases derived thereon. We then define the connecting module

as a classifier, which takes the left and right phrases P (l) and P (r) as input

and outputs a normalized score S(P
(m)
j | P (l), P (r), I) for each j ∈ {1, . . . , L}.

In particular, we adopt a two-level LSTM model [3] to encode P (l) and

P (r) respectively, as shown in Fig. 6.3. Here, xt is the word embedding

for the word at t-th step, and v and {u1, ...,uM} are, respectively, global

and regional image features extracted from a Convolutional Neural Network.

In this model, the low-level LSTM controls the attention while interacting

with the visual features, and the high-level LSTM drives the evolution of the

encoded state. The encoders for P (l) and P (r) share the same structure but

have different parameters, as one phrase should be encoded differently based

on its place in the ordered pair. Their encodings, denoted by z(l) and z(r),

go through two fully-connected layers followed by a softmax layer, as

S(P
(m)
j | P (l), P (r), I) = Softmax(Wcombine·(Wl·z(l)+Wr·z(r)))|j, ∀ j = 1, ..., L.

(6.1)

The values of the softmax output, i.e. S(P
(m)
j | P (l), P (r), I), are then used

as the connecting scores, and the connecting phrase that yields the highest

connecting score is chosen to connect P (l) and P (r).
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(a) Structure of the Phrase Encoder
(b) Computation of the Phrase
Encoder

Figure 6.3: This figure shows the two-level LSTM used to encode phrases in the
connecting and evaluation modules. Left: the structure of the phrase encoder,
right: its updating formulas.

While not all pairs of P (l) and P (r) can be connected into a longer phrase,

in practice a virtual connecting phrase P
(m)
neg is added to serve as a negative

class.

Based on the C-Module, we compute the connecting score for a phrase

as follow. For each noun-phrase P in the initial set, which is derived in

the phrase-from-image extraction stage, we set its score to be the binary

classification score SC(P |I). For each longer phrase produced via the C-

Module, its score is computed as

S
(
P (l) ⊕ P (m) ⊕ P (r) | I

)
= S

(
P (l) | I

)
+S

(
P (r) | I

)
+S

(
P (m) | P (l), P (r), I

)
.

(6.2)

The Evaluation Module. The Evaluation Module (E-Module) is used to

determine whether a phrase is a complete caption. Specifically, given an

input phrase P , the E-Module encodes it into a vector ze, using a two-level

LSTM model as described above, and then evaluates the probability of P
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being a complete caption as

Pr(P is complete) = σ
(
wT
cpze
)
. (6.3)

Extensions. Instead of following the greedy search strategy described above,

we can extend the framework for generating diverse captions for a given im-

age, via beam search or probabilistic sampling. Particularly, we can retain

multiple ordered pairs at each step and multiple connecting sequences for

each retained pair. In this way, we can form multiple beams for beam search,

and thus avoid being stuck in local minima. Another possibility is to gen-

erate diverse captions via probabilistic sampling, e.g. sampling a part of the

ordered pairs for pair selection instead of using all of them, or sampling the

connecting sequences based on the softmax probabilities instead of choosing

the one that yields the highest score.

The framework can also be extended to incorporate user preferences or

other conditions, as it consists of operations that are interpretable and con-

trollable. For example, one can influence the resultant captions by filtering

the initial noun phrases or modulating their scores. Such control is much

easier to implement on an explicit representation, i.e. a set of noun phrases,

than on an encoded feature vector. We show examples in the Experimental

section.
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6.4 Experiments

6.4.1 Experiment Settings

All experiments are conducted on MS-COCO [73] and Flickr30k [128].

There are 123, 287 images and 31, 783 images respectively in MS-COCO and

Flickr30k, each of which has 5 ground-truth captions. We follow the splits in

[50] for both datasets. In both datasets, the vocabulary is obtained by turning

words to lowercase and removing words that have non-alphabet characters

and appear less than 5 times. The removed words are replaced with a special

token UNK, resulting in a vocabulary of size 9, 487 for MS-COCO, and 7, 000

for Flickr30k. In addition, training captions are truncated to have at most 18

words. To collect training data for the connecting module and the evaluation

module, we further parse ground-truth captions into trees using NLPtookit

[79].

Several representative methods are compared with CompCap. They are

1) Neural Image Captioner (NIC) [115], which is the backbone network for

state-of-the-art captioning models. 2) AdapAtt [78] and 3) TopDown [3] are

methods that apply the attention mechanism and obtain state-of-the-art per-

formances. While all of these baselines encode images as semantical feature

vectors, we also compare CompCap with 4) LSTM-A5 [126], which predicts

the occurrence of semantical concepts as additional visual features. Subse-

quently, besides being used to extract noun-phrases that fed into CompCap,

predictions of the noun-phrase classifiers also serve as additional features for

LSTM-A5.

To ensure a fair comparsion, we have re-implemented all methods, and
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COCO-offline Flickr30k

SP CD B4 RG MT SP CD B4 RG MT

NIC [115] 17.4 92.6 30.2 52.3 24.3 12.0 40.7 19.9 42.9 18.0
AdapAtt [78] 18.1 97.0 31.2 53.0 25.0 13.4 48.2 23.3 45.5 19.3
TopDown [3] 18.7 101.132.4 53.8 25.7 13.8 49.8 23.7 45.6 19.7
LSTM-A5 [126] 18.0 96.6 31.2 53.0 24.9 12.2 43.7 20.4 43.8 18.2
CompCap + Prednp 19.9 86.2 25.1 47.8 24.3 14.9 42.0 16.4 39.4 19.0

CompCap + GTnp 36.8 122.2 42.8 55.3 33.6 31.9 89.7 37.8 50.5 28.7
CompCap + GTnp + GTorder 33.8 182.6 64.1 82.4 45.1 29.8 132.8 54.9 77.1 39.6

Table 6.1: This table lists results of different methods on MS-COCO [73] and
Flickr30k [128]. Results of CompCap using ground-truth noun-phrases and com-
posing orders are shown in the last two rows.

train all methods using the same hyperparameters. Specifically, we use

ResNet-152 [40] pretrained on ImageNet [100] to extract image features,

where activations of the last convolutional and fully-connected layer are used

respectively as the regional and global feature vectors. During training, we

fix ResNet-152 without finetuning, and set the learning rate to be 0.0001 for

all methods. When testing, for all methods we select parameters that obtain

best performance on the validation set to generate captions. Beam-search of

size 3 is used for baselines. As for CompCap, n = 7 noun-phrases with top

scores are selected to represent the input image, and beam-search of size 3 is

used for pair selection, while no beam-search is used for connecting phrase

selection.

6.4.2 Experiment Results

General Comparison. We compare the quality of the generated cap-

tions on the offline test set of MS-COCO and the test set of Flickr30k, in

terms of SPICE (SP) [2], CIDEr (CD) [113], BLEU-4 (B4) [84], ROUGE
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(RG) [71], and METEOR (MT) [66]. As shown in Table 6.1, among all

methods, CompCap with predicted noun-phrases obtains the best results

under the SPICE metric, which has higher correlation with human judge-

ments [2], but is inferior to baselines in terms of CIDEr, BLEU-4, ROUGE

and METEOR. These results well reflect the properties of methods that gen-

erate captions sequentially and compositionally. Specifically, while SPICE

focuses on semantical analysis, metrics including CIDEr, BLEU-4, ROUGE

and METEOR are known to favor frequent training n-grams [16], which are

more likely to appear when following a sequential generation procedure. On

the contrary, the compositional generation procedure preserves semantic con-

tent more effectively, but may contain more n-grams that are not observed

in the training set.

An ablation study is also conducted on components of the proposed com-

positional paradigm, as shown in the last three rows of Table 6.1. In par-

ticular, we represented the input image with ground-truth noun-phrases col-

lected from 5 associated captions, leading to a significant boost in terms of

all metrics. This indicates that CompCap effectively preserves the semantic

content, and the better the semantic understanding we have for the input

image, CompCap is able to generate better captions for us. Moreover, we

also randomly picked one ground-truth caption, and followed its composing

order to integrate its noun-phrases into a complete caption, so that CompCap

only accounts for connecting phrase selection. As a result, metrics except for

SPICE obtain further boost, which is reasonable as we only use a part of all

ground-truth noun-phrases, and frequent training n-grams are more likely to

appear following some ground-truth composing order.
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Figure 6.4: This figure shows the performance curves of different methods when
less data is used for training. Unlike baselines, CompCap obtains stable results as
the ratio of used data decreases.

Generalization Analysis. As the proposed compositional paradigm

disentangles semantics and syntax into two stages, and CompCap mainly

accounts for composing semantics into a syntactically correct caption, Com-

pCap is good at handling out-of-domain semantic content, and requires less

data to learn. To verify this hypothesis, we conducted two studies. In the

first experiment, we controlled the ratio of data used to train the baselines

and modules of CompCap, while leaving the noun-phrase classifiers being

trained on full data. The resulting curves in terms of SPICE and CIDEr are

shown in Figure 6.4, while other metrics follow similar trends. Compared to

baselines, CompCap is steady and learns how to compose captions even only

1% of the data is used.

In the second study, we trained baselines and CompCap on MS-COCO/Flickr30k,

and tested them on Flickr30k/MS-COCO. Again, the noun-phrase classifiers

are trained with in-domain data. The results in terms of SPICE and CIDEr

are shown in Figure 6.5, where significant drops are observed for the base-
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Figure 6.5: This figure compares the generalization ability of different methods,
where they are trained on one dataset, and tested on the other. Compared to
baselines, CompCap is shown to generalize better across datasets.

lines. On the contrary, competitive results are obtained for CompCap trained

using in-domain and out-of-domain data, which suggests the benefit of disen-

tangling semantics and syntax, as the distribution of semantics often varies

from dataset to dataset, but the distribution of syntax is relatively stable

across datasets.

Diversity Analysis. One important property of CompCap is the ability

to generate diverse captions, as these can be obtained by varying the involved

noun-phrases or the composing order. To analyze the diversity of captions,

we computed five metrics that evaluate the degree of diversity from various

aspects. As shown in Table 6.2, we computed the ratio of novel captions

and unique captions [117], which respectively account for the percentage of
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NIC [115] AdapAtt
[78]

TopDown
[3]

LSTM-A5
[126]

CompCap

Novel Caption Ratio 44.53% 49.34% 45.05% 50.06% 90.48%
Unique Caption Ratio 55.05% 59.14% 61.58% 62.61% 83.86%
Diversity (Dataset) 7.69 7.86 7.99 7.77 9.85
Diversity (Image) 2.25 3.61 2.30 3.70 5.57
Vocabulary Usage 6.75% 7.22% 7.97% 8.14% 9.18%

Table 6.2: This table measures the diversity, on MSCOCO, of generated captions
from various aspects, which suggests CompCap is able to generate more diverse
captions.

captions that are not observed in the training set, and the percentage of

distinct captions among all generated captions. We further computed the

percentage of words in the vocabulary that are used to generate captions,

referred to as the vocabulary usage.

Finally, we quantify the diversity of a set of captions by averaging their

pair-wise editing distances, which leads to two additional metrics. Specifi-

cally, when only a single caption is generated for each image, we report the

average distance over captions of different images, which is defined as the di-

versity at the dataset level. If multiple captions are generated for each image,

we then compute the average distance over captions of the same image, fol-

lowed by another average over all images. The final average is reported as the

diversity at the image level. The former measures how diverse the captions

are for different images, and the latter measures how diverse the captions are

for a single image. In practice, we use 5 captions with top scores in the beam

search to compute the diversity at the image level, for each method.

CompCap obtained the best results in all metrics, which suggests that

captions generated by CompCap are diverse and novel. We further show

qualitative samples in Figure 6.6, where captions are generated following
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a living room

a table

a couch
a table and a couch 

in a living room

a table in a living 

room next to a couch

a living room with a 

table and a couch

a train

a wooded area

tracks
a wooded area with 

a train on tracks

a train on tracks in a 

wooded area

a train traveling through 

a wooded area on tracks

a city with a bus 

driving down a street

a highway in a 

traffic jam in a city

a cloudy day with 

various cars on a street

{a city, a street, 

a bus}

a road with people on 

the sidewalk near trees

{a traffic jam, 

a city, a highway}

{various cars, a 

street, a cloudy day}

{people, trees, a 

road, the sidewalk}

Figure 6.6: This figure shows images with diverse captions generated by Comp-
Cap. In first two rows, captions are generated with same noun-phrases but different
composing orders. And in the last row, captions are generated with different sets
of noun-phrases.

different composing orders, or using different noun-phrases.

6.5 Additional Materials

6.5.1 Semantic Non-Maximum Suppression for Noun

Phrases

The key for suppression is to find semantically similar noun-phrases. To

do that, we first compare the central nouns in noun-phrases, where if two

central nouns are synonyms, or plurals of synonyms, we then regard their

corresponding noun-phrases as semantically similar. On the other hand, two

noun-phrases that do not have synonymic central nouns are also likely to be

semantically similar, conditioned on the input image. e.g. a man and a cook

conditioned on an image of somebody in a kitchen. To suppressing noun-
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phrases in such cases, we use encoders in the C-Module (See sec 3.2 of the

main content) to get two encodings z(l) and z(r) for each noun-phrase. Intu-

itively, if two noun-phrases are semantically similar conditioned on the input

image, the normalized euclidean distance between their encodings should be

small. As a result, we compute the normalized euclidean distances respec-

tively for z(l) and z(r) of two noun-phrases, and take the sum of two distances

as the measurement, which is more robust than using a single encoding. Fi-

nally, if the sum of distances is less than ε we then regard the corresponding

noun-phrases as semantically similar, conditioned on the input image. In

practice, we use ε = 0.002, which is obtained by grid search on the evalua-

tion set.

6.5.2 Encoders in the C-Module

SP CD B4 RG MT

Encoders with shared parameters 18.9 84.9 24.3 46.8 23.2
Encoders with independent parameters 19.9 86.2 25.1 47.8 24.3

Table 6.3: This table lists results of CompCap using C-Modules that have encoders
with shared parameters or not. Results are reported on MS-COCO [73].

As mentioned in the main content, the C-Module contains two encoders,

respectively for P (l) and P (r) of an ordered pair. While these encoders share

the same structure, we let them have independent parameters as the same

phrase should have different encodings according to its position in the ordered

pair. To show that, we compared C-Modules that have encoders with shared

parameters or not, as shown in Table 6.3. The results support our hypothesis,

where the C-Module that has encoders with independent parameters leads

to better performance.
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Figure 6.7: This figure shows the performance curves of CompCap by tuning
different hyperparameters. Specifically, (a) and (b) are results of tuning the size
of beam search for pair selection, in terms of SPICE and CIDEr. Similarly, (c)
and (d), (e) and (f) are respectively results of tuning the size of beam search for
connecting phrase selection, and the maximum number of noun-phrases used to
generate captions.
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6.5.3 Hyperparameters

Several hyperparameters can be tuned for CompCap, namely the max-

imum number of noun-phrases used to generate captions, the size of beam

search for pair selection and the size of beam search for connecting phrase

selection. While we respectively set them to be 7, 10 and 1 for experiments

in the main content, here we show the curves of adjusting these hyperparam-

eters, one at a time. The curves are shown in Figure 6.7, where the size of

beam search for pair selection and connecting phrase selection have minor

influence on the performance of CompCap. Moreover, as the maximum num-

ber of used noun-phrases increases, SPICE improves but CIDEr decreases,

which is reasonable as too much semantics in a caption may risk the syntac-

tic correctness of that caption. We use 7 in our experiments as it is a good

trade-off.



Chapter 7

Conclusion

In this thesis, we studied the problem of generating more natural and di-

verse image descriptions by respectively taking limitations in terms of evalua-

tion metrics, learning strategies and model structures, of existing captioning

pipelines into consideration, and proposing corresponding components that

avoid such limitations.

In the first part, we proposed an alternative learning strategy for image

captioning, which aims to improve the overall quality of captions, includ-

ing semantic relevance, naturalness, and diversity. The proposed approach is

based on conditional GAN, and jointly trains a generator G and an evaluator

E in an end-to-end manner, with the help of Policy Gradient. The caption

generator trained in this way produces captions that are more natural, di-

verse and semantically relevant as compared to a state-of-the-art MLE-based

model. Besides, the evaluator also provides caption quality assessment that

is more consistent with human’s evaluation.

In the second part, we proposed Contrastive Learning, a new learning

strategy that employs a state-of-the-art model as reference, by which it is

116
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able to maintain the optimality of the target model, while encouraging the

target model to learn from distinctiveness, which is an important property

of high quality captions. It not only leads more accurate captions being

generated by the target model, but also extends well to models with different

structures, which clearly shows its generalization ability.

In the third part, we studied the impact of embedding latent states as

2D multi-channel feature maps in the context of image captioning. Com-

pared to the standard practice that embeds latent states as 1D vectors, 2D

states consistently achieve higher captioning performances across different

settings. Such representations also preserve the spatial locality of the latent

states, which helps reveal the internal dynamics of the decoding process, and

interpret the connections between visual and linguistic domains.

In the fourth part, we present a new framework for visual relationship de-

tection, which integrates a variety of cues: appearance, spatial configurations,

as well as the statistical relations between objects and relationship predicates.

At the heart of this framework is the Deep Relational Network (DR-Net), a

novel formulation that extends the expressive power of deep neural networks

to relational modeling. The proposed method not only outperforms the state

of the art by a remarkable margin, but also yields promising results in scene

graph generation, a task that represents higher level of image understanding.

In the final part, we propose a novel paradigm for image captioning.

While the typical existing approaches encode images using feature vectors

and generate captions sequentially, the proposed method generates captions

in a compositional manner. In particular, our approach factorizes the cap-

tioning procedure into two stages. In the first stage, an explicit representation
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of the input image, consisting of noun-phrases, is extracted. In the second

stage, a recursive compositional procedure is applied to assemble extracted

noun-phrases into a caption. As a result, caption generation follows a hi-

erarchical structure, which naturally fits the properties of human language.

The proposed compositional procedure is shown to preserve semantics more

effectively, require less data to train, generalize better across datasets, and

yield more diverse captions.

While image captioning is an important task in the community of com-

puter vision, it lies at the intersection of observation and communication,

making it a must-solve problem towards artificial intelligence. To this end,

we hope our work could attract more attention to this problem and provide

insights to interested researchers.
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